Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators

被引:0
|
作者
Amat, Sergio [1 ]
Busquier, Sonia [1 ]
Bermudez, Concepcion [1 ]
Alberto Magrenan, Angel [2 ]
机构
[1] Univ Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 21833, Spain
[2] Univ Int La Rioja, Escuela Ingn, C Gran Via 41, Logrono 26005, La Rioja, Spain
关键词
Newton type methods; third order; semilocal convergence; centered hypotheses; divided differences;
D O I
10.3390/a8030669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is devoted to the semilocal convergence, using centered hypotheses, of a third order Newton-type method in a Banach space setting. The method is free of bilinear operators and then interesting for the solution of systems of equations. Without imposing any type of Frechet differentiability on the operator, a variant using divided differences is also analyzed. A variant of the method using only divided differences is also presented.
引用
收藏
页码:669 / 679
页数:11
相关论文
共 35 条
  • [1] On a third-order Newton-type method free of bilinear operators
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Plaza, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 639 - 653
  • [2] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [3] On a two-step relaxed Newton-type method
    Amat, S.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11341 - 11357
  • [4] On a bilinear operator free third order method on Riemannian manifolds
    Amat, S.
    Argyros, I. K.
    Busquier, S.
    Castro, R.
    Hilout, S.
    Plaza, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7429 - 7444
  • [5] Third-Order Newton-Type Methods Combined with Vector Extrapolation for Solving Nonlinear Systems
    Zhou, Wen
    Kou, Jisheng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] On two high-order families of frozen Newton-type methods
    Amat, S.
    Argyros, I.
    Busquier, S.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (01)
  • [7] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [8] Newton-type methods of high order and domains of semilocal and global convergence
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 142 - 154
  • [10] On the convergence of extended Newton-type method for solving variational inclusions
    Rashid, M. H.
    COGENT MATHEMATICS, 2014, 1