Peptide Amphiphiles in Corneal Tissue Engineering

被引:20
作者
Miotto, Martina [1 ]
Gouveia, Ricardo M. [1 ]
Connon, Che J. [1 ]
机构
[1] Newcastle Univ, Inst Genet Med, Int Ctr Life, Cent Pkwy, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
cornea; corneal diseases; peptide amphiphiles; bioactive molecules; tissue engineering; corneal tissue engineering; wound healing;
D O I
10.3390/jfb6030687
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration.
引用
收藏
页码:687 / 707
页数:21
相关论文
共 119 条
[1]   Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold [J].
Alaminos, Miguel ;
Del Carmen Sanchez-Quevdo, Maria ;
Munoz-Avila, Jose Ignacio ;
Serrano, Daniel ;
Medialdea, Santiago ;
Carreras, Ignacio ;
Campos, Antonio .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (08) :3311-3317
[2]   Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers [J].
Angeloni, Nicholas L. ;
Bond, Christopher W. ;
Tang, Yi ;
Harrington, Daniel A. ;
Zhang, Shuming ;
Stupp, Samuel I. ;
McKenna, Kevin E. ;
Podlasek, Carol A. .
BIOMATERIALS, 2011, 32 (04) :1091-1101
[3]   What mouse mutants teach us about extracellular matrix function [J].
Aszodi, A. ;
Legate, Kyle R. ;
Nakchbandi, I. ;
Faessler, R. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :591-621
[4]   Inhibition of cancer cell proliferation by designed peptide amphiphiles [J].
Aulisa, Lorenzo ;
Forraz, Nico ;
McGuckin, Colin ;
Hartgerink, Jeffrey D. .
ACTA BIOMATERIALIA, 2009, 5 (03) :842-853
[5]   The role of laminins in basement membrane function [J].
Aumailley, M ;
Smyth, N .
JOURNAL OF ANATOMY, 1998, 193 :1-21
[6]  
Azar Dimitri T, 2006, Trans Am Ophthalmol Soc, V104, P264
[7]   BEHAVIOR OF FIBROBLASTS FROM DEVELOPING AVIAN CORNEA - MORPHOLOGY AND MOVEMENT INSITU AND INVITRO [J].
BARD, JBL ;
HAY, ED .
JOURNAL OF CELL BIOLOGY, 1975, 67 (02) :400-418
[8]   Coassembly of amphiphiles with opposite peptide polarities into nanofibers [J].
Behanna, HA ;
Donners, JJJM ;
Gordon, AC ;
Stupp, SI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (04) :1193-1200
[9]   Self-assembling peptide amphiphile nanofiber matrices for cell entrapment [J].
Beniash, E ;
Hartgerink, JD ;
Storrie, H ;
Stendahl, JC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (04) :387-397
[10]   Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels [J].
Branco, Monica C. ;
Pochan, Darrin J. ;
Wagner, Norman J. ;
Schneider, Joel P. .
BIOMATERIALS, 2009, 30 (07) :1339-1347