ON RIGHT ALTERNATIVE RINGS WITHOUT PROPER RIGHT IDEALS

被引:3
作者
KLEINFELD, E
机构
[1] University of Hawaii, University of Iowa
关键词
D O I
10.2140/pjm.1969.31.87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a right alternative ring R without proper right ideals, of characteristicnot two, containing idempotents e and 1, e ≠ 1, such that ex = e(ex) for all x ∈B must be alternative and hence a Cayley vector matrix algebra of dimension 8 over its center. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:87 / +
页数:1
相关论文
共 9 条
[1]   ON SIMPLE ALTERNATIVE RINGS [J].
ALBERT, AA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (02) :129-135
[2]   ON RIGHT ALTERNATIVE ALGEBRAS [J].
ALBERT, AA .
ANNALS OF MATHEMATICS, 1949, 50 (02) :318-328
[3]   THE STRUCTURE OF RIGHT ALTERNATIVE ALGEBRAS [J].
ALBERT, AA .
ANNALS OF MATHEMATICS, 1954, 59 (03) :408-417
[4]   ON A CLASS OF RIGHT ALTERNATIVE RINGS WITHOUT NILPOTENT IDEALS [J].
HUMM, MM .
JOURNAL OF ALGEBRA, 1967, 5 (02) :164-&
[5]   RIGHT ALTERNATIVE RINGS [J].
KLEINFELD, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (06) :939-944
[6]   ON A CLASS OF RIGHT ALTERNATIVE RINGS [J].
KLEINFELD, E .
MATHEMATISCHE ZEITSCHRIFT, 1965, 87 (01) :12-+
[7]  
MANERI C, 1963, P AM MATH SOC, V14, P110
[8]  
San Soucie, 1955, P AM MATH SOC, V6, P291
[9]  
Skornyakov L. A., 1951, IZV AKAD NAUK SSSR M, V15, P177