APPROXIMATION PROPERTIES FOR MODIFIED (p, q)-BERNSTEIN-DURRMEYER OPERATORS

被引:0
|
作者
Mursaleen, Mohammad [1 ]
Alabied, Ahmed A. H. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
MATHEMATICA BOHEMICA | 2018年 / 143卷 / 02期
关键词
(p; q)-integer; q)-Bernstein-Durrmeyer operator; q-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem;
D O I
10.21136/MB.2017.0086-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce modified (p,q)-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D*(n,p,q) and compute the rate of convergence for the function f belonging to the class Lip/M(gamma).
引用
收藏
页码:173 / 188
页数:16
相关论文
共 50 条
  • [1] Approximation Properties of (λ, μ)-Bernstein-Durrmeyer Operators
    Cai, Qing-Bo
    Zhou, Guorong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5946 - 5953
  • [2] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [3] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374
  • [4] SOME APPROXIMATION THEOREMS FOR MODIFIED BERNSTEIN-DURRMEYER OPERATORS
    Li Song (Zhejiang University
    ApproximationTheoryandItsApplications, 1994, (04) : 1 - 12
  • [5] ON APPROXIMATION PROPERTIES OF A NEW TYPE OF BERNSTEIN-DURRMEYER OPERATORS
    Acar, Tuncer
    Aral, Ali
    Gupta, Vijay
    MATHEMATICA SLOVACA, 2015, 65 (05) : 1107 - 1122
  • [6] Approximation properties of complex genuine α-Bernstein-Durrmeyer operators
    Goyal, Meenu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9799 - 9808
  • [7] BETTER DEGREE OF APPROXIMATION BY MODIFIED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Agrawal, Purshottam Narain
    Gungor, Sule Yuksel
    Kumar, Abhishek
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (02): : 75 - 92
  • [8] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [9] Genuine modified Bernstein-Durrmeyer operators
    Mohiuddine, Syed Abdul
    Acar, Tuncer
    Alghamdi, Mohammed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    MATHEMATICS, 2022, 10 (11)