Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

被引:0
|
作者
Lee, Hyo-Jung [1 ]
Kim, Peol-A [2 ]
Park, Mira [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] KFDA, Pharmaceut & Med Devices Res Dept, Seoul, South Korea
[3] Eulji Univ, Dept Prevent Med, Daejeon 301832, South Korea
基金
新加坡国家研究基金会;
关键词
Time-course microarray data; pharmacokinetic parameter; clustering;
D O I
10.5351/KJAS.2011.24.4.623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [31] Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data
    Simek, K
    Fujarewicz, K
    Swierniak, A
    Kimmel, M
    Jarzab, B
    Wiench, M
    Rzeszowska, J
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (04) : 417 - 427
  • [32] Microarray data clustering using particle swarm optimization K-means algorithm
    Deng, YP
    Kayarat, D
    Elasri, MO
    Brown, SJ
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1730 - 1734
  • [33] On the Role of Clustering and Visualization Techniques in Gene Microarray Data
    Ciaramella, Angelo
    Staiano, Antonino
    ALGORITHMS, 2019, 12 (06):
  • [34] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97
  • [35] Non-Negative Factorization for Clustering of Microarray Data
    Morgos, L.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2014, 9 (01) : 16 - 23
  • [36] Analysing microarray expression data through effective clustering
    Masciari, E.
    Mazzeo, G. M.
    Zaniolo, C.
    INFORMATION SCIENCES, 2014, 262 : 32 - 45
  • [37] Finding best algorithmic components for clustering microarray data
    Milan Vukićević
    Kathrin Kirchner
    Boris Delibašić
    Miloš Jovanović
    Johannes Ruhland
    Milija Suknović
    Knowledge and Information Systems, 2013, 35 : 111 - 130
  • [38] Combinatorial and machine learning approaches in clustering microarray data
    Pozzi, Sergio
    Zoppis, Italo
    Mauri, Giancarlo
    BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS, 2005, : 63 - 71
  • [39] Distance based feature selection for clustering microarray data
    Dash, Manoranjan
    Gopalkrishnan, Vivekanand
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2008, 4947 : 512 - 519
  • [40] Automatic Generation of Merge Factor for Clustering Microarray Data
    Pavan, K. Karteeka
    Rao, Allam Appa
    Rao, A. V. Dattatreya
    Sridhar, G. R.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (09): : 127 - 131