Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter

被引:0
|
作者
Lee, Hyo-Jung [1 ]
Kim, Peol-A [2 ]
Park, Mira [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] KFDA, Pharmaceut & Med Devices Res Dept, Seoul, South Korea
[3] Eulji Univ, Dept Prevent Med, Daejeon 301832, South Korea
基金
新加坡国家研究基金会;
关键词
Time-course microarray data; pharmacokinetic parameter; clustering;
D O I
10.5351/KJAS.2011.24.4.623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A major goal of time-course microarray data analysis is the detection of groups of genes that manifest similar expression patterns over time. The corresponding numerous cluster algorithms for clustering time-course microarray data have been developed. In this study, we proposed a clustering method based on the primary pharmacokinetic parameters in the pharmacokinetics study for assessment of pharmaceutical equivalents between two drug products. A real data and a simulation data was used to demonstrate the usefulness of the proposed method.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [1] Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review
    Coffey, Norma
    Hinde, John
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [2] Clustering of time-course gene expression data using functional data analysis
    Song, Joon Jin
    Lee, Ho-Jin
    Morris, Jeffrey S.
    Kang, Sanghoon
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (04) : 265 - 274
  • [3] Clustering of short time-course gene expression data with dissimilar replicates
    Cinar, Ozan
    Ilk, Ozlem
    Iyigun, Cem
    ANNALS OF OPERATIONS RESEARCH, 2018, 263 (1-2) : 405 - 428
  • [4] Clustering of short time-course gene expression data with dissimilar replicates
    Ozan Cinar
    Ozlem Ilk
    Cem Iyigun
    Annals of Operations Research, 2018, 263 : 405 - 428
  • [5] A recursively partitioned mixture model for clustering time-course gene expression data
    Koestler, Devin C.
    Marsit, Carmen J.
    Christensen, Brock C.
    Kelsey, Karl T.
    Houseman, E. Andres
    TRANSLATIONAL CANCER RESEARCH, 2014, 3 (03) : 217 - +
  • [6] A novel HMM-based clustering algorithm for the analysis of gene expression time-course data
    Zeng, YJ
    Garcia-Frias, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2472 - 2494
  • [7] A modified correlation coefficient based similarity measure for clustering time-course gene expression data
    Son, Young Sook
    Baek, Jangsun
    PATTERN RECOGNITION LETTERS, 2008, 29 (03) : 232 - 242
  • [8] Clustering Microarray Data using Fuzzy Clustering with Viewpoints
    Karayianni, Katerina N.
    Spyrou, George M.
    Nikita, Konstantina S.
    IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, 2012, : 362 - 367
  • [9] Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data
    Coffey, N.
    Hinde, J.
    Holian, E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 14 - 29
  • [10] A Review of Cluster Analysis for Time Course Microarray Data
    Sohn, In Suk
    Lee, Jae Won
    Kim, Seo Young
    KOREAN JOURNAL OF APPLIED STATISTICS, 2006, 19 (01) : 13 - 32