LINEAR-MAPS WHICH PRESERVE A BALANCED NONSINGULAR INERTIA CLASS

被引:4
作者
LOEWY, R [1 ]
机构
[1] COLL WILLIAM & MARY,DEPT MATH,WILLIAMSBURG,VA 23187
关键词
D O I
10.1016/0024-3795(90)90015-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be an even integer such that n ≥ 4. Let T be an invertible linear map on the space of n × n real symmetric matrices which maps the set of matrices having inertia( n 2, n 2, 0) into itself. Then there exist a nonsingular matrix S and ε{lunate} = ± 1 such that T(A) = ε{lunate}StAS. This is an analogue of a result obtained for Hermitian matrices by Pierce and Rodman. © 1990.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 7 条
[1]  
Dieudonne D.J., 1949, ARCH MATH, V1, P282, DOI 10.1007/BF02038756
[2]  
FLANDERS H, 1962, J LOND MATH SOC, V37, P10
[3]   SUBSPACES OF SYMMETRIC MATRICES CONTAINING MATRICES WITH A MULTIPLE 1ST EIGENVALUE [J].
FRIEDLAND, S ;
LOEWY, R .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 62 (02) :389-399
[4]  
HELTON JW, 1985, LINEAR MULTILINEAR A, V17, P29
[5]  
Johnson C.R., 1986, LINEAR MULTILINEAR A, V19, P21
[6]  
LOEWY R, UNPUB LINEAR MAPS WH
[7]   LINEAR PRESERVERS OF THE CLASS OF HERMITIAN MATRICES WITH BALANCED INERTIA [J].
PIERCE, S ;
RODMAN, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (04) :461-472