L-p -Versions of One Conformally Invariant Inequality

被引:4
作者
Avkhadiev, F. G. [1 ]
Nasibullin, R. G. [1 ]
Shafigullin, I. K. [1 ]
机构
[1] Kazan Fed Univ, Ul Kremlyovskaya 18, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
Poincare metric; isoperimetric inequality; uniformly perfect set; Hardy type in-equality;
D O I
10.3103/S1066369X1808011X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain L-p-versions of theorems proved by J. L. Fernandez and J. M. Rodriguez in the paper "The Exponent of Convergence of Riemann Surfaces, Bass Riemann Surfaces", Ann. Acad. Sci. Fenn. Ser.A. I. Mathematica 15, 165-182 (1990). An important role in the proof of our results is due to the approach of V. M. Miklyukov and M. K. Vuorinen. In particular, we use the isoperimetric profile of hyperbolic domains.
引用
收藏
页码:76 / 79
页数:4
相关论文
共 11 条
[1]  
Ahlfors L. V., 1973, CONFORMAL INVARIANTS
[2]   Integral inequalities in domains of hyperbolic type and their applications [J].
Avkhadiev, F. G. .
SBORNIK MATHEMATICS, 2015, 206 (12) :1657-1681
[3]   Hardy-type inequalities in arbitrary domains with finite inner radius [J].
Avkhadiev, F. G. ;
Nasibullin, R. G. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) :191-200
[4]  
Avkhadiev F.G., 2006, LOBACHEVSKII J MATH, V21, P3
[5]   Hardy-type inequalities on planar and spatial open sets [J].
F. G. Avkhadiev .
Proceedings of the Steklov Institute of Mathematics, 2006, 255 (1) :2-12
[6]  
Avkhadiev FG, 2009, FRONT MATH, P1
[7]   THE EXPONENT OF CONVERGENCE OF RIEMANN SURFACES - BASS RIEMANN SURFACES [J].
FERNANDEZ, JL ;
RODRIGUEZ, JM .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 15 (01) :165-183
[8]  
Fernandez JL., 1989, REV MAT IBEROAMERICA, V5, P47, DOI [10.4171/RMI/85, DOI 10.4171/RMI/85]
[9]   Hardy's inequality for W1,p0-functions on Riemannian manifolds [J].
Miklyukov, VM ;
Vuorinen, MK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) :2745-2754
[10]   UNIFORMLY PERFECT SETS AND THE POINCARE METRIC [J].
POMMERENKE, C .
ARCHIV DER MATHEMATIK, 1979, 32 (02) :192-199