ON THE COSET CATEGORY OF A SKEW LATTICE dfdd

被引:0
作者
Costa, Joao Pita [1 ]
机构
[1] Inst Jozef Stefan, Jamova Cesta 39, Ljubljana 1000, Slovenia
关键词
noncommutative lattice; skew lattice; band of semigroups; Green's relations; coset structure; regularity; coset category;
D O I
10.2478/dema-2014-0044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Skew lattices are noncommutative generalizations of lattices. The coset structure decomposition is an original approach to the study of these algebras describing the relation between its rectangular classes. In this paper, we will look at the category determined by these rectangular algebras and the morphisms between them, showing that not all skew lattices can determine such a category. Furthermore, we will present a class of examples of skew lattices in rings that are not strictly categorical, and present sufficient conditions for skew lattices of matrices in rings to constitute boolean AND-distributive skew lattices.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 20 条
  • [1] Birkhoff Garrett, 1967, AMS C PUBLICATIONS, VXXV
  • [2] Costa J.R., 2012, THESIS
  • [3] Costa JP, 2011, DEMONSTR MATH, V44, P673
  • [4] Coset laws for categorical skew lattices
    Costa, Joao Pita
    [J]. ALGEBRA UNIVERSALIS, 2012, 68 (1-2) : 75 - 89
  • [5] Skew lattices of matrices in rings
    Cvetko-Vah, K
    [J]. ALGEBRA UNIVERSALIS, 2005, 53 (04) : 471 - 479
  • [6] Cvetko-Vah K., 2010, NOVI SAD J MATH, V40, P11
  • [7] Cvetko-Vah K., 2005, THESIS
  • [8] On the structure of semigroups of idempotent matrices
    Cvetko-Vah, Karin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (01) : 204 - 213
  • [9] On the coset laws for skew lattices
    Cvetko-Vah, Karin
    Costa, Joao Pita
    [J]. SEMIGROUP FORUM, 2011, 83 (03) : 395 - 411
  • [10] Principal-ideal bands
    Fillmore, P
    MacDonald, G
    Radjabalipour, M
    Radjavi, H
    [J]. SEMIGROUP FORUM, 1999, 59 (03) : 362 - 373