Limiting probability distribution for a random walk with topological constraints

被引:0
|
作者
Koralov, L. B. [1 ]
Nechaev, S. K. [1 ]
Sinai, Ya G. [1 ]
机构
[1] USSR Acad Sci, LD Landau Theoret Phys Inst, Moscow 117334, Russia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The joint limiting probability distribution is studied for the two-dimensional random walk with topological constraints, omega(2ns), on Z(2) lattice, where 2n is its total length and (0 <= s <= 1). The expression for the density of finite-dimensional limiting probability distribution pi{xi(n)(S-1),xi(n)(S-2),...,xi(n)(s(r))} where xi(n)(s) = omega(2ns)/n(1/4), is described.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Limiting Probability Distribution of Random Sample Maximum
    Jana, Kahounova
    Jan, Vojtech
    APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMY: AMSE 2009, 2009, : 207 - 215
  • [2] Limiting distribution for the maximal standardized increment of a random walk
    Kabluchko, Zakhar
    Wang, Yizao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (09) : 2824 - 2867
  • [3] Focused random walk with probability distribution for SAT with long clauses
    Huimin Fu
    Jun Liu
    Yang Xu
    Applied Intelligence, 2020, 50 : 4732 - 4753
  • [4] Focused random walk with probability distribution for SAT with long clauses
    Fu, Huimin
    Liu, Jun
    Xu, Yang
    APPLIED INTELLIGENCE, 2020, 50 (12) : 4732 - 4753
  • [5] EMISSION PROBABILITY IN A RANDOM WALK
    LEVINSON, N
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03): : 442 - 447
  • [6] On convergent probability of a random walk
    Lee, Y. -F.
    Ching, W. -K.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (07) : 833 - 838
  • [7] Exact probability distribution function for multifractal random walk models of stocks
    Saakian, D. B.
    Martirosyan, A.
    Hu, Chin-Kun
    Struzik, Z. R.
    EPL, 2011, 95 (02)
  • [8] A two-parameter random walk with approximate exponential probability distribution
    Van der Straeten, E
    Naudts, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (23): : 7245 - 7256
  • [9] Probability Distribution of the Median Taken on Partial Sums of a Simple Random Walk
    Pfeifer, Christian
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (01) : 31 - 46
  • [10] A random walk procedure for evaluating probability distribution functions in communication systems
    Yevick, D
    Bardyszewski, W
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (01) : 108 - 110