Fixed points of composition operators II

被引:40
作者
Epstein, Henri [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1088/0951-7715/2/2/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytic unicritical fixed points of composition operators of Feigenbaum type for interval and circle maps are shown to exist for every value of r > 1, where r is the order of the critical point.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 12 条
[1]  
Coullet P, 1978, THE J, V539, pC5
[2]  
Donoghue W., 1974, MONOTONE MATRIX FUNC
[3]   ON THE EXISTENCE OF FIXED-POINTS OF THE COMPOSITION OPERATOR FOR CIRCLE MAPS [J].
ECKMANN, JP ;
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (02) :213-231
[4]   NEW PROOFS OF THE EXISTENCE OF THE FEIGENBAUM FUNCTIONS [J].
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (03) :395-426
[5]  
EPSTEIN H, 1988, NONLINEAR EVOLUTION
[6]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[9]   UNIVERSAL PROPERTIES OF THE TRANSITION FROM QUASI-PERIODICITY TO CHAOS IN DISSIPATIVE SYSTEMS [J].
OSTLUND, S ;
RAND, D ;
SETHNA, J ;
SIGGIA, E .
PHYSICA D, 1983, 8 (03) :303-342
[10]  
RAND DA, 1987, NEW DIRECTIONS DYNAM