INEQUALITIES OF JENSEN'S TYPE FOR GENERALIZED k-g-FRACTIONAL INTEGRALS

被引:1
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne, Vic 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, DST NRF Ctr Excellence Math & Stat Sci, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
TAMKANG JOURNAL OF MATHEMATICS | 2018年 / 49卷 / 03期
关键词
Generalized Riemann-Liouville fractional integrals; Hadamard fractional integrals; Convex functions; Jensen type inequalities; Hermite-Hadamard type inequalities;
D O I
10.5556/j.tkjm.49.2018.2690
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some inequalities of Jensen and Hermite-Hadamard type for the k-g-fractional integrals of convex functions defined an interval [a,b]. Some examples for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a,b] and for classical Riemann-Liouville fractional integrals are also given.
引用
收藏
页码:257 / 276
页数:20
相关论文
共 38 条
[1]  
Akdemir AO, 2014, J COMPUT ANAL APPL, V16, P375
[2]   Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral [J].
Aljinovic, Andrea Aglic .
JOURNAL OF MATHEMATICS, 2014, 2014
[3]  
Anastassiou G.A., 2014, INDIAN J MATH, V56, P333
[4]   FRACTIONAL REPRESENTATION FORMULAE UNDER INITIAL CONDITIONS AND FRACTIONAL OSTROWSKI TYPE INEQUALITIES [J].
Anastassiou, George .
DEMONSTRATIO MATHEMATICA, 2015, 48 (03) :357-378
[5]  
[Anonymous], 2016, AUST J MATH ANAL APP
[6]  
[Anonymous], FASC MATH
[7]  
APOSTOL TM, 1975, MATH ANAL
[8]   GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-CONVEX IN THE SECOND SENSE [J].
Budak, Huseyin ;
Sarikaya, Mehmet Zeki ;
Set, Erhan .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2016, 15 (04) :11-21
[9]  
Cerone P., 2000, HDB ANAL COMPUTATION, P135
[10]  
Dragomir S. S., 2014, ANALYSIS BERLIN, V34, P223