COUNTABLE DECOMPOSITIONS OF R2 AND R3

被引:17
作者
ERDOS, P
KOMJATH, P
机构
[1] LEHIGH UNIV, DEPT MATH, BETHLEHEM, PA 18015 USA
[2] EOTVOS LORAND UNIV, DEPT COMP SCI, H-1445 BUDAPEST, HUNGARY
关键词
D O I
10.1007/BF02187793
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
If the continuum hypothesis holds, R 2 is the union of countably many sets, none spanning a right triangle. Some partial results are obtained concerning the following conjecture of the first author:R 2 is the union of countably many sets, none spanning an isosceles triangle. Finally, it is shown that R 3 can be colored with countably many colors with no monochromatic rational distance. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:325 / 331
页数:7
相关论文
共 10 条
[1]  
Ceder J., 1969, REV ROUMAINE MATH PU, V14, P1247
[2]  
Davies R.O., 1963, J LOND MATH SOC, V38, P433
[3]  
DAVIES RO, 1972, MATH P CAMBRIDGE PHI, V72, P179
[4]   ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS [J].
ERDOS, P ;
HAJNAL, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :61-&
[5]  
ERDOS P, 1968, MAT LAPOK, V19, P255
[6]  
Erdos P., 1978, REAL ANAL EXCHANGE, V4, P113
[7]  
Erdos P., 1969, PROOF TECHNIQUES GRA, P27
[8]  
ERDOS P, 1985, 8TH P SE C COMB GRAP, P3
[9]  
KUNEN K, IN PRESS DECOMPOSING
[10]  
Kunen K., 1980, SET THEORY