LOGARITHMIC SOBOLEV INEQUALITIES ON LOOP-GROUPS

被引:51
作者
GROSS, L
机构
[1] Department of Mathematics, Cornell University, Ithaca
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-1236(91)90123-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact Lie group. Denote by m the Brownian bridge measure on the loop group Y ≡ {g ε{lunate} C([0, 1]; G): g(0) = g(1) = e }. The finite energy subgroup of Y determines in a natural way a gradient operation for functions on Y. The following logarithmic Sobolev inequality is proven, ∝ f2, log |f|dm ≤ ∝ {|gradf(y)|2 + V(y) f (y)2} dm + ∥f∥2log∥f∥wherein ∥f∥ denotes the L2(m) norm and V is a potential which is quadratic in the associated Lie algebra valued Brownian motion. The inequality is derived by a method of inheritance from the known inequality for the G valued Brownian motion. © 1991.
引用
收藏
页码:268 / 313
页数:46
相关论文
共 28 条
[11]  
FUKUSHIMA M., 1980, N HOLLAND MATH LIB, V23
[12]  
GELFAND IM, 1977, COMPOS MATH, V35, P299
[13]  
GETZLER E, 1989, B SCI MATH, V113, P151
[14]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[15]  
GROSS L, 1990, 1989 BIEL C WHIT NOI
[16]  
Gross L., 1972, J FUNCT ANAL, V10, P52
[17]  
GROSS L, IN PRESS ILL J MATH
[18]  
Helgason S., 1962, DIFFERENTIAL GEOMETR
[19]   LOGARITHMIC SOBOLEV INEQUALITIES AND STOCHASTIC ISING-MODELS [J].
HOLLEY, R ;
STROOCK, D .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :1159-1194
[20]  
Ikeda N., 1981, STOCHASTIC DIFFERENT