LOGARITHMIC SOBOLEV INEQUALITIES ON LOOP-GROUPS

被引:51
作者
GROSS, L
机构
[1] Department of Mathematics, Cornell University, Ithaca
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-1236(91)90123-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact Lie group. Denote by m the Brownian bridge measure on the loop group Y ≡ {g ε{lunate} C([0, 1]; G): g(0) = g(1) = e }. The finite energy subgroup of Y determines in a natural way a gradient operation for functions on Y. The following logarithmic Sobolev inequality is proven, ∝ f2, log |f|dm ≤ ∝ {|gradf(y)|2 + V(y) f (y)2} dm + ∥f∥2log∥f∥wherein ∥f∥ denotes the L2(m) norm and V is a potential which is quadratic in the associated Lie algebra valued Brownian motion. The inequality is derived by a method of inheritance from the known inequality for the G valued Brownian motion. © 1991.
引用
收藏
页码:268 / 313
页数:46
相关论文
共 28 条
[1]  
AIRAULT H, 1988, B SCI MATH, V112, P3
[2]  
AIRAULT H, 1991, B SCI MATH, V115, P185
[3]   PROJECTION OF THE INFINITESIMAL GENERATOR OF A DIFFUSION [J].
AIRAULT, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 85 (02) :353-391
[4]  
ALBEVERIO S, 1978, COMPOS MATH, V36, P37
[5]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[6]  
Davies E.B., 1989, CAMBRIDGE TRACTS MAT, V92
[7]  
DAVIES EB, IN PRESS P HOEGH KRO
[8]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[9]  
DUESCHEL JD, 1989, LARGE DEVIATIONS
[10]  
Federer H., 1969, GRUNDLEHREN MATH WIS