RADEMACHERS THEOREM FOR WIENER FUNCTIONALS

被引:27
作者
ENCHEV, O [1 ]
STROOCK, DW [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
WIENER FUNCTIONALS; MALLIAVIN DERIVATIVE;
D O I
10.1214/aop/1176989392
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given an R-valued, Borel measurable function F on an abstract Wiener space (E, H, mu), we show that F is uniformly Lipschitz continuous in the directions of H if and only if it has one derivative in the sense of Malliavin and that derivative is an element of L(infinity)(mu; H).
引用
收藏
页码:25 / 33
页数:9
相关论文
共 4 条
[1]  
Kusuoka S., 1984, STOCHASTIC ANAL VOL, P271
[2]   SOBOLEV SPACES OF WIENER FUNCTIONALS AND MALLIAVINS CALCULUS [J].
SUGITA, H .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (01) :31-48
[3]  
WILLIAMS D, 1974, P LOND MATH SOC, V28, P738
[4]  
[No title captured]