A STRAIGHTFORWARD METHOD FOR FINDING IMPLICIT SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS

被引:6
作者
BANERJEE, PP [1 ]
DAOUD, F [1 ]
HEREMAN, W [1 ]
机构
[1] COLORADO SCH MINES,DEPT MATH,GOLDEN,CO 80401
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 04期
关键词
D O I
10.1088/0305-4470/23/4/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors present a straightforward method for finding implicit solutions for nonlinear evolution and wave equations. The method is illustrated by finding implicit single solitary wave solutions for the Harry Dym, Korteweg-de Vries, modified Korteweg-de Vries, Boussinesq and the generalised Korteweg-de Vries equations.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
[41]   Solving solitary wave solutions of higher dimensional nonlinear evolution equations with the homotopy analysis method [J].
Shi Yu-Ren ;
Wang Ying-Hai ;
Yang Hong-Juan ;
Duan Wen-Shan .
ACTA PHYSICA SINICA, 2007, 56 (12) :6791-6796
[42]   NONLINEAR RANDOM WAVE-EQUATIONS [J].
ELSHAMY, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1634-1643
[43]   An automated algebraic method for finding a series of exact travelling wave solutions of nonlinear evolution equations [J].
Liu, YP ;
Li, ZB .
CHINESE PHYSICS LETTERS, 2003, 20 (03) :317-320
[44]   Solitary wave solutions and periodic solutions for higher-order nonlinear evolution equations [J].
Wazwaz, Abdul-Majid .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) :1683-1692
[45]   An automated Jacobi elliptic function method for finding periodic wave solutions to nonlinear evolution equations [J].
Liu, YP ;
Li, ZB .
CHINESE PHYSICS LETTERS, 2002, 19 (09) :1228-1230
[46]   LATTICE SOLITARY WAVE SOLUTIONS OF DISCRETE NONLINEAR-WAVE EQUATIONS USING A DIRECT METHOD [J].
XIAO, Y ;
HAI, WH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (20) :6873-6880
[47]   Periodic and solitary wave solutions of coupled nonlinear wave equations using the first integral method [J].
Bekir, Ahmet ;
Unsal, Omer .
PHYSICA SCRIPTA, 2012, 85 (06)
[48]   Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics [J].
Ali, H. M. Shahadat ;
Habib, M. A. ;
Miah, M. Mamun ;
Akbar, M. Ali .
HELIYON, 2020, 6 (04)
[49]   Traveling solitary wave solutions to evolution equations with nonlinear terms of any order [J].
Feng, ZS .
CHAOS SOLITONS & FRACTALS, 2003, 17 (05) :861-868
[50]   Single and multi-solitary wave solutions to a class of nonlinear evolution equations [J].
Wang, Deng-Shan ;
Li, Hongbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) :273-298