Learning Neural Network Controllers for Stabilizing Hybrid Dynamic Systems

被引:0
作者
Andreichenko, D. K. [1 ]
Zhadaev, F. M. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, 83 Astrakhanskaya Str, Saratov 410012, Russia
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2018年 / 18卷 / 03期
关键词
dynamic systems; hybrid dynamic systems; neural networks; control;
D O I
10.18500/1816-9791-2018-18-3-354-360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Control modules based on artificial neural networks (NN) are often used for controlling objects with lumped parameters. Controled objects in such systems have finite set of natural oscillation frequencies. Thereby applying NN-based controllers after setting appropriate internal parameters (learning) minimize or fully exclude probability of appearing unstable natural oscillation frequencies for a long period of time. On the other hand if the controlled object includes objects with distributed parameters (such as elastic rods) the number of its natural oscillation frequencies is at least countable infinite. Thus, for using NN-based controlers for such systems additional check of stability is needed. In case of using classic controllers (such as PID-controller) stability is guarantied by choosing internal parameters of controller from the area of stability of the system. Such approach is not applyable for NN-based controllers since their parameters are determed during the learning process. This article develops the rule which guaranties that after the learning process set of NN weights will belong to the area of stability of the system. That rule in fact appears as modification of loss function and does not apply valuable limitations on choosing a learning method. The obtained results could be used in cases of controlling hybrid dynamic systems with help of control modules based on feedforward neural networks.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 15 条
[1]  
Ajorkar A, 2014, JACM, V1, P67
[2]   A parallel algorithm for the parametric synthesis of a system for the angular stabilization of a rotating elastic beam under the action of longitudinal acceleration [J].
Andreichenko, D. K. ;
Andreichenko, K. P. ;
Kononov, V. V. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2017, 56 (02) :192-207
[3]   Adaptive Algorithm of Parametric Synthesis of Hybrid Dynamical Systems [J].
Andreichenko, D. K. ;
Andreichenko, K. P. ;
Melnichuk, D., V ;
Portenko, M. S. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (04) :465-475
[4]   The Choice of Optimal Parameters for Combined Dynamical Systems [J].
Andreichenko, D. K. ;
Andreichenko, K. P. ;
Komarova, M. S. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (01) :7-11
[5]   Parallel Algorithm of Optimal Parameters Calculation for the Single Channel Angular Stabilization System [J].
Andreichenko, D. K. ;
Andreichenko, K. P. ;
Kononov, V. V. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04) :109-117
[6]   Parameter selection and dynamic analysis of gas jet stabilization systems with elastic rods [J].
Andreichenko, D. K. ;
Andreichenko, K. P. ;
Komarova, M. S. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2012, 51 (04) :573-586
[7]  
Andreichenko D. K, 2013, MODELIROVANIE ANALIZ
[8]  
Andreichenko DK, 2000, J COMPUT SYS SC INT+, V39, P383
[9]  
Andreichenko K. P, 2016, REPORTS MILITARY SCI, V2, P13
[10]  
Luoren L., 2011, ENERGY PROCEDIA, V13, P6988, DOI [10.1016/S1876-6102(14)00454-8, DOI 10.1016/S1876-6102(14)00454-8]