FINITE-DIFFERENCE METHOD OF 1ST BOUNDARY-PROBLEM FOR QUASI-LINEAR PARABOLIC-SYSTEMS

被引:0
作者
ZHOU, YL
SHEN, LJ
HAN, Z
机构
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES | 1991年 / 34卷 / 04期
关键词
FINITE DIFFERENCE METHOD; QUASI-LINEAR PARABOLIC SYSTEM; WEAK IMPLICIT SCHEME; STRONG IMPLICIT SCHEME; CONVERGENCE CONDITION; EXISTENCE AND UNIQUENESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence, uniqueness and convergence of weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: [GRAPHICS] where u, phi and f are m-dimensional vector valued functions, A is an m x m positively definite matrix and u(x)k denotes partial k(u)/partial x(k). For this problem, the estimations of the difference solution are obtained. As h-->0, DELTA-t-->0, the difference solution converges weakly in W2(2M,1) (Q(T)) to the unique generalized solution u(x,t) is-an-element-of W2(2M,1)(Q(T)) of problems (1), (2), (3). Especially, a favorable restriction condition to the step lengths DELTA-t and h for explicit and weak implicit schemes is found.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 3 条
[1]  
KRUZHKOV RN, 1979, TRUDY SEMINARA IM I, V5, P217
[2]  
SHEN LJ, 1987, P NUM METH PART DIFF, P129
[3]  
ZHOU YL, 1985, SCI SIN A-MATH P A T, V28, P368