On Commutativity of Completely Prime Gamma-Rings

被引:0
作者
Rakhimov, I. S. [1 ,2 ]
Dey, Kalyan Kumar [3 ]
Paul, Akhil Chandra [3 ]
机构
[1] Univ Putra Malaysia, Dept Math, Fac Sci, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[3] Rajshahi Univ, Dept Math, Rajshahi 6205, Bangladesh
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2013年 / 7卷 / 02期
关键词
Gamma-ring; completely prime Gamma-ring; centroid of Gamma-rings; annihilator; extended centroid of Gamma-rings;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that any completely prime Gamma-ring M satisfying the condition alpha alpha b beta c = alpha beta b alpha c (a, b, c is an element of M and alpha, beta is an element of Gamma) with nonzero derivation, is a commutative integral Gamma-domain if its characteristic is not two. We also show that if the characteristic of M is 2 the Gamma-ring M is either commutative or is an order in a simple 4-dimensional algebra over its center. We give necessary condition in terms of derivations for belongings of an element of the Gamma-ring M to the center of M when the characteristic of M is not two. If char M = 2, and a is an element of Z(M), then we show that the derivation is the inner derivation.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 15 条
  • [1] ON GAMMA-RINGS OF NOBUSAWA
    BARNES, WE
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1966, 18 (03) : 411 - &
  • [2] Ceven Y., 2002, C U FEN EDEBIYAT FAK, V23, P39
  • [3] ON JORDAN LEFT k-DERIVATIONS OF COMPLEXITY PRIME Γ-RINGS
    Chakraborty, Sujoy
    Paul, Akhil Chandra
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (06) : 1829 - 1840
  • [4] Herstein, 1969, TOPICS RING THEORY
  • [5] Herstein I. N., 1976, CHICAGO LECT MATH
  • [6] Herstein IN., 1979, CANAD MATH B, V22, P509, DOI 10.4153/CMB-1979-066-2
  • [7] HERSTEIN IN, 1978, CANAD MATH B, V21, P369
  • [8] Kandamar H., 2000, TURK J MATH, V24, P221
  • [9] Nobusawa N, 1964, OSAKA J MATH, V1, P65
  • [10] Ozturk M. A., 2001, TURK, V25, P367