Semiclassical formula for the number variance of the Riemann zeros

被引:84
作者
Berry, M. V. [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
关键词
D O I
10.1088/0951-7715/1/3/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By pretending that the imaginary parts E-m of the Riemann zeros are eigenvalues of a quantum Hamiltonian whose corresponding classical trajectories are chaotic and without time-reversal symmetry, it is possible to obtain by asymptotic arguments a formula for the mean square difference V (L; x) between the actual and average number of zeros near the xth zero in an interval where the expected number is L. This predicts that when L << L-max = ln(E/2 pi)/2 pi In 2 (where x = (E/2 pi)(ln(E/2 pi) 1) + 7/8), Vis the variance of the Gaussian unitary ensemble (GUE) of random matrices, while when L >> L-max, V will have quasirandom oscillations about the mean value pi(-2)(ln In(E/2 pi) + 1.4009). Comparisons with V(L; x) computed by Odlyzko from 10(5) zeros E-m near x = 10(12)' confirm all details of the semiclassical predictions to within the limits of graphical precision.
引用
收藏
页码:399 / 407
页数:9
相关论文
共 15 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE-EQUATION IN A FINITE DOMAIN .3. EIGENFREQUENCY DENSITY OSCILLATIONS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1972, 69 (01) :76-&
[3]  
Berry M. V., 1986, SPRINGER LECT NOTES, P1
[6]  
Edwards H.E., 1974, RIEMANNS ZETA FUNCTI
[7]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[8]   PERIODIC-ORBITS AND A CORRELATION-FUNCTION FOR THE SEMICLASSICAL DENSITY OF STATES [J].
HANNAY, JH ;
DEALMEIDA, AMO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3429-3440
[9]  
Mehta M.L., 1967, RANDOM MATRICES STAT
[10]  
Montgomery H. L., 1973, P S PURE MATH, V24, P181, DOI [10.1090/pspum/024/9944, DOI 10.1090/PSPUM/024/9944]