NEW FUNCTIONAL-INTEGRATION METHOD FOR THE 1D RANDOM POTENTIAL PROBLEM - THE STATISTICS OF LOCALIZED WAVE-FUNCTIONS

被引:5
作者
KOLOKOLOV, IV [1 ]
机构
[1] BUDKER INST NUCL PHYS,NOVOSIBIRSK 630090,RUSSIA
来源
PHYSICA D | 1995年 / 86卷 / 1-2期
关键词
D O I
10.1016/0167-2789(95)00095-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I start from the derivation of the Abrikosov-Ryzhkin model for the 1D random potential problem, In its framework I find closed functional representations for various physical quantities. The representation uses number-valued fields only. These functional integrals are calculated exactly without the use of any perturbative expansions, Expressions for the multipoint densities correlators are obtained. These correlators allow to compute the distribution function of inverse sizes of localized wave functions valid both for an infinite sample and for a sample with a finite length.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 27 条
[1]  
ABRIKOSOV AA, 1976, ZH EKSP TEOR FIZ+, V71, P1204
[2]  
ABRIKOSOV AA, 1978, ADV PHYS, V27, P146
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
[Anonymous], 1988, INTRO THEORY DISORDE
[5]  
[Anonymous], 1996, TABLES INTEGRALS SER
[6]  
BEREZINSKII VL, 1973, ZH EKSP TEOR FIZ+, V65, P125
[7]   SCALING PROPERTIES OF BAND RANDOM MATRICES [J].
CASATI, G ;
MOLINARI, L ;
IZRAILEV, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1851-1854
[8]   RELEVANCE OF CLASSICAL CHAOS IN QUANTUM-MECHANICS - THE HYDROGEN-ATOM IN A MONOCHROMATIC-FIELD [J].
CASATI, G ;
CHIRIKOV, BV ;
SHEPELYANSKY, DL ;
GUARNERI, I .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (02) :77-123
[9]  
CATTANEO AS, 1994, J STAT PHYS
[10]  
CHERTKOV M, WIS947JANPH PREPR