GLOBAL EXISTENCE OF SOLUTIONS OF VOLTERRA INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE

被引:19
作者
GRIPENBERG, G
机构
[1] Department of Mathematics, University of Helsinki, 00100 Helsingfors
关键词
D O I
10.1006/jdeq.1993.1035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient conditions for the global existence of a strong solution of the equation ut (t, x) = ∫t0k(t - s) σ(ux(s, x))xds + f(t, x) are given. The kernel k satisfies Rk̂(z) ≥ κ |k̂(z)| and σ is increasing with sup (σ′ (p)) < 1 + 2κ([formula] + κ). © 1993 Academic Press, Inc.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 19 条
[1]  
AIZICOVICI S, 1977, AN STIINT U AI CUZ I, V23, P87
[2]  
Brezis H, 1973, LECT NOTES MATH, V5
[4]   WEAK SOLUTIONS OF A CLASS OF QUASI-LINEAR HYPERBOLIC INTEGRODIFFERENTIAL EQUATIONS DESCRIBING VISCOELASTIC MATERIALS [J].
ENGLER, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 113 (01) :1-38
[6]  
Gripenberg G., 1990, VOLTERRA INTEGRAL FU
[8]   ON A CLASS OF QUASI-LINEAR PARTIAL INTEGRODIFFERENTIAL EQUATIONS WITH SINGULAR KERNELS [J].
HRUSA, WJ ;
RENARDY, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 64 (02) :195-220
[9]   THE CAUCHY-PROBLEM IN ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY [J].
HRUSA, WJ ;
NOHEL, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 59 (03) :388-412
[10]  
HRUSA WJ, 1988, SIAM J MATH ANAL, V19, P257, DOI 10.1137/0519019