AN INVERSE PROBLEM FOR A 2D PARABOLIC EQUATION WITH NONLOCAL OVERDETERMINATION CONDITION

被引:7
作者
Kinash, N. Ye [1 ]
机构
[1] Ivan Franko Natl Univ, 1 Univ Str, UA-79000 Lvov, Ukraine
关键词
inverse problem; determining coefficients; parabolic equation; nonlocal overdetermination condition; rectangular domain;
D O I
10.15330/cmp.8.1.107-117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an inverse problem of identifying the time-dependent coefficient a(t) in a two-dimensional parabolic equation: u(t) = a(t) Delta u + b(1)(x,y,t) u(x) + b(2)(x,y,t) u(y) + c(x,y,t) u + f (x,y,t), (x,y,t) is an element of Q(T), with the initial condition, Neumann boundary data and the nonlocal overdetermination condition v(1)(t)u(0,y(0),t) + v(2)(t)u(h,y(0),t) = mu(3)(t), t is an element of[0,T], where y(0) is a fixed number from [0, l]. The conditions of existence and uniqueness of the classical solution to this problem are established. For this purpose the Green function method, Schauder fixed point theorem and the theory of Volterra intergral equations are utilized.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2014, IRANIAN J NUMER ANAL
[2]  
Bereznytska IB, 2001, MATH METHODS PHYS ME, V44, P54
[3]   Identification of parameters in the 2-D IHCP [J].
Coles, C ;
Murio, DA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) :939-956
[4]   Simultaneous space diffusivity and source term reconstruction in 2D IHCP [J].
Coles, C ;
Murio, DA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (12) :1549-1564
[5]  
Friedman A, 1964, PARTIAL DIFFERENTIAL
[6]  
Hryntsiv N. M., 2011, J NATL U LVIV POLITE, V696, P32
[7]   Nonlocal Inverse Problem for a Parabolic Equation with Degeneration [J].
Huzyk, N. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (06) :847-863
[8]   An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions [J].
Ismailov, Mansur I. ;
Kanca, Fatma .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (06) :692-702
[9]  
Ivanchov M., 2003, INVERSE PROBLEMS EQU
[10]  
Ivanchov M. I., 1995, INVERSE PROBLEMS HEA