EXTENDED STATES IN ONE-DIMENSIONAL LATTICES - APPLICATION TO THE QUASI-PERIODIC COPPER-MEAN CHAIN

被引:71
作者
SIL, S
KARMAKAR, SN
MOITRA, RK
CHAKRABARTI, A
机构
[1] UNIV BRISTOL,HH WILLS PHYS LAB,THEORY GRP,BRISTOL BS8 1TL,AVON,ENGLAND
[2] SCOTTISH CHURCH COLL,DEPT PHYS,CALCUTTA 700006,INDIA
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevB.48.4192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The question of the conditions under which one-dimensional systems support extended electronic eigenstates is addressed in a very general context. Using real-space renormalization-group arguments we discuss the precise criteria for determining the entire spectrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [J. Q. You, J. R. Yan, T. Xie, X. Zeng, and J. X. Zhong, J. Phys.: Condens. Matter 3, 7255 (1991)]: we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.
引用
收藏
页码:4192 / 4195
页数:4
相关论文
共 23 条
[1]   DELOCALIZATION TRANSITION IN ONE DIMENSION [J].
AZBEL, MY .
SOLID STATE COMMUNICATIONS, 1981, 37 (10) :789-790
[2]   TRANSMISSION RESONANCES AND THE LOCALIZATION LENGTH IN ONE-DIMENSIONAL DISORDERED-SYSTEMS [J].
AZBEL, MY ;
SOVEN, P .
PHYSICAL REVIEW B, 1983, 27 (02) :831-835
[3]   EIGENSTATES AND PROPERTIES OF RANDOM-SYSTEMS IN ONE DIMENSION AT ZERO TEMPERATURE [J].
AZBEL, MY .
PHYSICAL REVIEW B, 1983, 28 (08) :4106-4125
[4]   ON THE NATURE OF EIGENSTATES OF QUASI-PERIODIC LATTICES IN ONE DIMENSION [J].
CHAKRABARTI, A ;
KARMAKAR, SN ;
MOITRA, RK .
PHYSICS LETTERS A, 1992, 168 (04) :301-304
[5]   RENORMALIZATION-GROUP METHOD FOR EXACT GREENS-FUNCTIONS OF SELF-SIMILAR LATTICES - APPLICATION TO GENERALIZED FIBONACCI CHAINS [J].
CHAKRABARTI, A ;
KARMAKAR, SN .
PHYSICAL REVIEW B, 1991, 44 (02) :896-899
[6]   LOCALIZATION, MOBILITY EDGES, AND METAL-INSULATOR-TRANSITION IN A CLASS OF ONE-DIMENSIONAL SLOWLY VARYING DETERMINISTIC POTENTIALS [J].
DASSARMA, S ;
HE, S ;
XIE, XC .
PHYSICAL REVIEW B, 1990, 41 (09) :5544-5565
[7]   TRANSMISSION OF LIGHT THROUGH DETERMINISTIC APERIODIC NON-FIBONACCIAN MULTILAYERS [J].
DULEA, M ;
SEVERIN, M ;
RIKLUND, R .
PHYSICAL REVIEW B, 1990, 42 (06) :3680-3689
[8]   ABSENCE OF LOCALIZATION IN A RANDOM-DIMER MODEL [J].
DUNLAP, DH ;
WU, HL ;
PHILLIPS, PW .
PHYSICAL REVIEW LETTERS, 1990, 65 (01) :88-91
[9]   NEW METHOD FOR CALCULATION OF QUANTUM-MECHANICAL TRANSMITTANCE APPLIED TO DISORDERED WIRES [J].
GODIN, TJ ;
HAYDOCK, R .
PHYSICAL REVIEW B, 1988, 38 (08) :5237-5244
[10]   ELECTRONIC-PROPERTIES OF THE TIGHT-BINDING FIBONACCI HAMILTONIAN [J].
GUMBS, G ;
ALI, MK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (08) :951-970