STRONG CONVERGENCE OF HYBRID ITERATIVE SCHEMES WITH ERRORS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

被引:0
作者
Kim, Seung-Hyun [1 ]
Kang, Mee-Kwang [2 ]
机构
[1] Kyungsung Univ, Dept Math, Busan 48434, South Korea
[2] Dong Eui Univ, Dept Math, Busan 47340, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2018年 / 25卷 / 02期
关键词
strong convergence; asymptotically pseudo-contractive mapping; firmly nonexpansive mapping; equilibrium problem; hybrid iterative scheme;
D O I
10.7468/jksmeb.2018.25.2.149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a strong convergence result under an iterative scheme for N finite asymptotically k(i)-strictly pseudo-contractive mappings and a firmly nonexpansive mappings S-r. Then, we modify this algorithm to obtain a strong convergence result by hybrid methods. Our results extend and unify the corresponding ones in [1, 2, 3, 8]. In particular, some necessary and sufficient conditions for strong convergence under Algorithm 1.1 are obtained.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 8 条
[1]   An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings [J].
Ceng, L. -C. ;
Al-Homidan, S. ;
Ansari, Q. H. ;
Yao, J. -C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :967-974
[2]  
Kim SH, 2015, APPL MATH E-NOTES, V15, P276
[3]   A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions [J].
Kumam, Poom ;
Petrot, Narin ;
Wangkeeree, Rabian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) :2013-2026
[4]   Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces [J].
Marino, Giuseppe ;
Xu, Hong-Kun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :336-346
[5]   Strong convergence of the CQ method for fixed point iteration processes [J].
Martinez-Yanes, C ;
Xu, HK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (11) :2400-2411
[6]  
MOUDAFI A, 1999, LECT NOTES EC MATH S, V477
[7]   Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations [J].
Osilike, MO ;
Igbokwe, DI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (4-5) :559-567
[8]  
Qin X., 2003, NONLINEAR ANAL, V281, P516