MEAN 1ST-PASSAGE TIME IN THE PRESENCE OF TELEGRAPH NOISE AND THE ORNSTEIN-UHLENBECK PROCESS

被引:16
作者
KUS, M
WODKIEWICZ, K
机构
[1] Department of Physics and Astronomy, University of New Mexico, Albuquerque
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 06期
关键词
D O I
10.1103/PhysRevE.47.4055
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the problem of the escape time (mean first-passage time) from a given interval in the case when the noise is a sum of many independent random telegraph signals. We reduce the problem to the solution of a linear system of algebraic equations valid for arbitrary intensities and correlation times of the noise. The solution allows an easy investigation of the limiting case of the Ornstein-Uhlenbeck process. We find exact scaling laws obeyed by the mean first-passage times in the case of random telegraph signals and the Ornstein-Uhlenbeck process.
引用
收藏
页码:4055 / 4063
页数:9
相关论文
共 25 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1983, HDB STOCHASTIC METHO
[3]   1ST-PASSAGE TIMES OF NON-MARKOVIAN PROCESSES - THE CASE OF A REFLECTING BOUNDARY [J].
BALAKRISHNAN, V ;
VANDENBROECK, C ;
HANGGI, P .
PHYSICAL REVIEW A, 1988, 38 (08) :4213-4222
[4]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[5]   NOISE IN STRONG LASER-ATOM INTERACTIONS - PHASE TELEGRAPH NOISE [J].
EBERLY, JH ;
WODKIEWICZ, K ;
SHORE, BW .
PHYSICAL REVIEW A, 1984, 30 (05) :2381-2389
[6]   FUNCTIONAL-CALCULUS APPROACH TO STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
FOX, RF .
PHYSICAL REVIEW A, 1986, 33 (01) :467-476
[7]   MEAN 1ST-PASSAGE TIMES AND COLORED NOISE [J].
FOX, RF .
PHYSICAL REVIEW A, 1988, 37 (03) :911-917
[8]   UNIFORM-CONVERGENCE TO AN EFFECTIVE FOKKER-PLANCK EQUATION FOR WEAKLY COLORED NOISE [J].
FOX, RF .
PHYSICAL REVIEW A, 1986, 34 (05) :4525-4527
[9]   1ST-PASSAGE TIME PROBLEMS FOR NON-MARKOVIAN PROCESSES [J].
HANGGI, P ;
TALKNER, P .
PHYSICAL REVIEW A, 1985, 32 (03) :1934-1937
[10]   MEMORY INDEX OF 1ST-PASSAGE TIME - A SIMPLE MEASURE OF NON-MARKOVIAN CHARACTER [J].
HANGGI, P ;
TALKNER, P .
PHYSICAL REVIEW LETTERS, 1983, 51 (25) :2242-2245