THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS

被引:53
作者
BANDLE, C [1 ]
POZIO, MA [1 ]
TESEI, A [1 ]
机构
[1] UNIV ROMA 2,DIPARTIMENTO MATEMAT,I-00173 ROMA,ITALY
关键词
D O I
10.2307/2000679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:487 / 501
页数:15
相关论文
共 12 条
[1]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[2]   ATTRACTIVITY PROPERTIES OF NONNEGATIVE SOLUTIONS FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC PROBLEMS [J].
DEMOTTONI, P ;
SCHIAFFINO, A ;
TESEI, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1984, 136 :35-47
[3]   ON THE EXISTENCE OF A FREE-BOUNDARY FOR A CLASS OF REACTION-DIFFUSION SYSTEMS [J].
DIAZ, JI ;
HERNANDEZ, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :670-685
[4]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[5]   DIFFUSION OF BIOLOGICAL POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) :35-49
[6]   UNIQUENESS FOR SUBLINEAR BOUNDARY-VALUE PROBLEMS [J].
LAETSCH, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 13 (01) :13-23
[8]   GLOBAL BIFURCATION AND ATTRACTIVITY OF STATIONARY SOLUTIONS OF A DEGENERATE DIFFUSION EQUATION [J].
PELETIER, LA ;
TESEI, A .
ADVANCES IN APPLIED MATHEMATICS, 1986, 7 (04) :435-454
[9]   SUPPORT PROPERTIES OF SOLUTIONS FOR A CLASS OF DEGENERATE PARABOLIC PROBLEMS [J].
POZIO, MA ;
TESEI, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1987, 12 (01) :47-75