CONSTRUCTION OF SOLUTIONS WITH EXACTLY K-BLOW-UP POINTS FOR THE SCHRODINGER-EQUATION WITH CRITICAL NONLINEARITY

被引:159
作者
MERLE, F
机构
[1] Centre de Mathématiques Appliquées, Ecole Normale Supérieure, Paris, Cedex 05, F-75230, 45, rue d'Ulm
关键词
D O I
10.1007/BF02096981
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the nonlinear Schrödinger equation: {Mathematical expression} where u:[0, T)×ℝN→ℂ. For any given points x1, x2,..., xk in ℝN, we construct a solution of Eq. (1), u(t), which blows up in a finite time T at exactly x1, x2,..., xk. In addition, we describe the precise behavior of the solution u(t) when t→T, at the blow-up points {x1, x2,..., xk} and in ℝN-{x1, x2,..., xk}. © 1990 Springer-Verlag.
引用
收藏
页码:223 / 240
页数:18
相关论文
共 19 条
[1]  
BERESTYCKI H, 1979, CR ACAD SCI A MATH, V288, P395
[2]   AN ODE APPROACH TO THE EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-LINEAR PROBLEMS IN RN [J].
BERESTYCKI, H ;
LIONS, PL ;
PELETIER, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) :141-157
[3]  
BERESTYCKI H, 1978, CR ACAD SCI A MATH, V287, P503
[4]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[5]   CONVERGENCE, ASYMPTOTIC PERIODICITY, AND FINITE-POINT BLOW-UP IN ONE-DIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
CHEN, XY ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :160-190
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[7]  
GINIBRE J, 1985, ANN I H POINCARE-AN, V4, P309
[8]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[9]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[10]  
LANDMAN M, IN PRESS PHYS REV A