Classification of suspicious lesions on prostate multiparametric MRI using machine learning

被引:30
作者
Kwon, Deukwoo [1 ]
Reis, Isildinha M. [1 ,2 ]
Breto, Adrian L. [3 ]
Tschudi, Yohann [3 ]
Gautney, Nicole [3 ]
Zavala-Romero, Olmo [3 ]
Lopez, Christopher [3 ]
Ford, John C. [3 ]
Punnen, Sanoj [4 ]
Pollack, Alan [3 ]
Stoyanova, Radka [3 ]
机构
[1] Univ Miami, Miller Sch Med, Sylvester Comprehens Canc Ctr, Biostat & Bioinformat Shared Resource, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Dept Publ Hlth Sci, Miami, FL 33136 USA
[3] Univ Miami, Miller Sch Med, Dept Radiat Oncol, Miami, FL 33136 USA
[4] Univ Miami, Miller Sch Med, Dept Urol, Miami, FL 33136 USA
关键词
prostate cancer; multiparametric MRI; machine learning;
D O I
10.1117/1.JMI.5.3.034502
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We present a radiomics-based approach developed for the SPIE-AAPM-NCI PROSTATEx challenge. The task was to classify clinically significant prostate cancer in multiparametric (mp) MRI. Data consisted of a "training dataset" (330 suspected lesions from 204 patients) and a "test dataset" (208 lesions/140 patients). All studies included T2-weighted (T2-W), proton density-weighted, dynamic contrast enhanced, and diffusion-weighted imaging. Analysis of the images was performed using the MIM imaging platform (MIM Software, Cleveland, Ohio). Prostate and peripheral zone contours were manually outlined on the T2-W images. A workflow for rigid fusion of the aforementioned images to T2-W was created in MIM. The suspicious lesion was outlined using the high b-value image. Intensity and texture features were extracted on four imaging modalities and characterized using nine histogram descriptors: 10%, 25%, 50%, 75%, 90%, mean, standard deviation, kurtosis, and skewness (216 features). Three classification methods were used: classification and regression trees (CART), random forests, and adaptive least absolute shrinkage and selection operator (LASSO). In the held out by the organizers test dataset, the areas under the curve (AUCs) were: 0.82 (random forests), 0.76 (CART), and 0.76 (adaptive LASSO). AUC of 0.82 was the fourth-highest score of 71 entries (32 teams) and the highest for feature-based methods. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 46 条
  • [1] [Anonymous], P SPIE INT SOC OPT E
  • [2] ESUR prostate MR guidelines 2012
    Barentsz, Jelle O.
    Richenberg, Jonathan
    Clements, Richard
    Choyke, Peter
    Verma, Sadhna
    Villeirs, Geert
    Rouviere, Olivier
    Logager, Vibeke
    Futterer, Jurgen J.
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (04) : 746 - 757
  • [3] Breiman J. H., 1984, CART CLASSIFICATION
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [6] Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
    Fehr, Duc
    Veeraraghavan, Harini
    Wibmer, Andreas
    Gondo, Tatsuo
    Matsumoto, Kazuhiro
    Vargas, Herbert Alberto
    Sala, Evis
    Hricak, Hedvig
    Deasy, Joseph O.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) : E6265 - E6273
  • [7] Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature
    Futterer, Jurgen J.
    Briganti, Alberto
    De Visschere, Pieter
    Emberton, Mark
    Giannarini, Gianluca
    Kirkham, Alex
    Taneja, Samir S.
    Thoeny, Harriet
    Villeirs, Geert
    Villers, Arnauld
    [J]. EUROPEAN UROLOGY, 2015, 68 (06) : 1045 - 1053
  • [8] Radiomics: Images Are More than Pictures, They Are Data
    Gillies, Robert J.
    Kinahan, Paul E.
    Hricak, Hedvig
    [J]. RADIOLOGY, 2016, 278 (02) : 563 - 577
  • [9] Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer
    Haider, Masoom A.
    van der Kwast, Theodorus H.
    Tanguay, Jeff
    Evans, Andrew J.
    Hashmi, Ali-Tahir
    Lockwood, Gina
    Trachtenberg, John
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 189 (02) : 323 - 328
  • [10] STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE
    HARALICK, RM
    [J]. PROCEEDINGS OF THE IEEE, 1979, 67 (05) : 786 - 804