H-SPLITTINGS AND 2-STAGE ITERATIVE METHODS

被引:219
作者
FROMMER, A
SZYLD, DB
机构
[1] BERG UNIV GH WUPPERTAL,FACHBEREICH MATH,W-5600 WUPPERTAL,GERMANY
[2] TEMPLE UNIV,DEPT MATH,PHILADELPHIA,PA 19122
关键词
D O I
10.1007/BF01385865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence of two-stage iterative methods for the solution of linear systems is studied. Convergence of the non-stationary method is shown if the number of inner iterations becomes sufficiently large. The R1-factor of the two-stage method is related to the spectral radius of the iteration matrix of the outer splitting. Convergence is further studied for splittings of H-matrices. These matrices are not necessarily monotone. Conditions on the splittings are given so that the two-stage method is convergent for any number of inner iterations.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 41 条
[1]  
ALEFELD G, 1976, NUMER MATH, V25, P291, DOI 10.1007/BF01399418
[3]  
Axelsson Owe, 1977, SPARSE MATRIX TECHNI, P1
[4]  
BEAWENS R, 1986, NUMER MATH, V49, P457
[5]  
Berman A., 1994, NONNEGATIVE MATRICES, DOI DOI 10.1137/1.9781611971262
[6]  
Collatz L., 1952, ARCH MATH, V3, P366, DOI DOI 10.1007/BF01899376
[7]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[8]  
Fan K., 1958, MONATSH MATH, V62, P219
[9]   CONVERGENCE OF RELAXED PARALLEL MULTISPLITTING METHODS [J].
FROMMER, A ;
MAYER, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 119 :141-152
[10]   THE CONVERGENCE OF INEXACT TSCHEBYSCHEFF AND RICHARDSON ITERATIVE METHODS FOR SOLVING LINEAR-SYSTEMS [J].
GOLUB, GH ;
OVERTON, ML .
NUMERISCHE MATHEMATIK, 1988, 53 (05) :571-593