Search for High-Confidence Blazar Candidates and Their MWL Counterparts in the Fermi-LAT Catalog Using Machine Learning

被引:7
作者
Einecke, Sabrina [1 ]
机构
[1] Tech Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany
来源
GALAXIES | 2016年 / 4卷 / 03期
基金
美国国家航空航天局;
关键词
Blazars; Fermi-LAT; 3FGL; Swift-XRT; 1SXPS; WISE; ALLWISE; Machine Learning;
D O I
10.3390/galaxies4030014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A large fraction of the gamma-ray sources presented in the Third Fermi-LAT source catalog (3FGL) is affiliated with counterparts and source types, but 1010 sources remain unassociated and 573 sources are associated with active galaxies of uncertain type. The purpose of this study is to assign blazar classes to these unassociated and uncertain sources, and to link counterparts to the unassociated. A machine learning algorithm is used for the classification, based on properties extracted from the 3FGL, an infrared and an X-ray catalog. To estimate the reliability of the classification, performance measures are considered through validation techniques. The classification yielded purity values around 90% with efficiency values of roughly 50%. The prediction of high-confidence blazar candidates has been conducted successfully, and the possibility to link counterparts in the same procedure has been proven. These findings confirm the relevance of this novel multiwavelength approach.
引用
收藏
页数:7
相关论文
共 11 条
  • [1] FERMI LARGE AREA TELESCOPE THIRD SOURCE CATALOG
    Acero, F.
    Ackermann, M.
    Ajello, M.
    Albert, A.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Belfiore, A.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bogart, J. R.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Britto, R. J.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    DeKlotz, M.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Venere, L.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 218 (02)
  • [2] A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST FERMI-LAT CATALOG
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, O.
    Charles, E.
    Chekhtman, A.
    Chen, A. W.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Cutini, S.
    de Angelis, A.
    DeCesar, M. E.
    De Luca, A.
    de Palma, F.
    Dermer, C. D.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Enoto, T.
    Favuzzi, C.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 753 (01)
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] SEARCH FOR GAMMA-RAY-EMITTING ACTIVE GALACTIC NUCLEI IN THE FERMI-LAT UNASSOCIATED SAMPLE USING MACHINE LEARNING
    Doert, M.
    Errando, M.
    [J]. ASTROPHYSICAL JOURNAL, 2014, 782 (01)
  • [5] 1SXPS: A DEEP SWIFT X-RAY TELESCOPE POINT SOURCE CATALOG WITH LIGHT CURVES AND SPECTRA
    Evans, P. A.
    Osborne, J. P.
    Beardmore, A. P.
    Page, K. L.
    Willingale, R.
    Mountford, C. J.
    Pagani, C.
    Burrows, D. N.
    Kennea, J. A.
    Perri, M.
    Tagliaferri, G.
    Gehrels, N.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 210 (01)
  • [6] Gamma-ray active galactic nucleus type through machine-learning algorithms
    Hassan, T.
    Mirabal, N.
    Contreras, J. L.
    Oya, I.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (01) : 220 - 225
  • [7] THE WISE GAMMA-RAY STRIP PARAMETERIZATION: THE NATURE OF THE GAMMA-RAY ACTIVE GALACTIC NUCLEI OF UNCERTAIN TYPE
    Massaro, F.
    D'Abrusco, R.
    Tosti, G.
    Ajello, M.
    Gasparrini, D.
    Grindlay, J. E.
    Smith, Howard A.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 750 (02)
  • [8] Fermi's SIBYL: mining the gamma-ray sky for dark matter subhaloes
    Mirabal, N.
    Frias-Martinez, V.
    Hassan, T.
    Frias-Martinez, E.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (01) : L64 - L68
  • [9] UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. IV. THE SWIFT CATALOG OF POTENTIAL X-RAY COUNTERPARTS
    Paggi, A.
    Massaro, F.
    D'Abrusco, R.
    Smith, H. A.
    Masetti, N.
    Giroletti, M.
    Tosti, G.
    Funk, S.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 209 (01)
  • [10] Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    Peng, HC
    Long, FH
    Ding, C
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (08) : 1226 - 1238