A distributed genetic algorithm improving the generalization behavior of neural networks

被引:0
作者
Branke, J
Kohlmorgen, U
Schmeck, H
机构
来源
MACHINE LEARNING: ECML-95 | 1995年 / 912卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial neural networks sometimes generalize poorly to unknown inputs, if they have been trained perfectly on relatively small training sets using standard learning algorithms like e.g. backpropagation. In this paper a distributed genetic algorithm is designed and used to improve the network's generalization capabilities by reducing the number of different weights in the neural network.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 17 条
  • [1] The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning
    Abu-Mostafa, Yaser S.
    [J]. NEURAL COMPUTATION, 1989, 1 (03) : 312 - 317
  • [2] BACK T, 1994, 1ST P IEEE C EV COMP, V1, P57
  • [3] BRANKE J, 1994, THESIS U KARLSRUHE G
  • [4] DODD N, 1991, TRANSPUT OCCAM ENG S, P687
  • [5] Goldberg DE, 1989, GENETIC ALGORITHMS S
  • [6] GOLDERG DE, 1991, COMP ANAL SELECTION, P68
  • [7] HANCOCK PJB, 1994, IN PRESS P AISB WORK
  • [8] LANG KJ, 1990, NEURAL NETWORKS, V3, P22
  • [9] LECUN Y, 1989, CONNECTIONISM IN PERSPECTIVE, P143
  • [10] LECUN Y, 1989, ADV NEURAL INFORMATI, V1, P598