Orbit systematics in anisotropic Kepler problem

被引:0
作者
Kubo, Kazuhiro [1 ]
Shimada, Tokuzo [1 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Phys, Tama Ku, 1-1-1 Higashimita, Kawasaki, Kanagawa 2148571, Japan
关键词
Quantum chaos; Anisotropic Kepler problem; Collision trajectory; Hyperbolic singularity;
D O I
10.1007/s10015-008-0577-6
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We revisit the Anisotropic Kepler Problem (AKP), which concerns with trajectories of an electron with anisotropic mass term in a Coulomb field. This is one of the most fundamental fields in Quantum Chaos. Nowadays various quantum systems are challenging us. Classical theories of these may have chaos. Quantum mechanics have developed from integrable cases and may have to be reformulated for such cases. AKP then serves as a suitable testing ground for quantum chaos. We first review a pioneering work by Martin Gutzwiller (J Math Phys (1977) 18: 106). We shall show the systematics of the trajectories using ample figures from an extensive numerical analysis. Then we focus on the role of hyperbolic singularities and we comment on the approximations in an analytic formulation.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 9 条
[1]   Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates [J].
Cornish, SL ;
Thompson, ST ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[2]   COLLISION ORBITS IN ANISOTROPIC KEPLER PROBLEM [J].
DEVANEY, RL .
INVENTIONES MATHEMATICAE, 1978, 45 (03) :221-251
[3]  
EINSTEIN A, 1917, VERHAND DEUT PHYS GE, V19, P82
[4]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[5]   BERNOULLI SEQUENCES AND TRAJECTORIES IN ANISOTROPIC KEPLER PROBLEM [J].
GUTZWILLER, MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :806-823
[6]   VERY COLD TRAPPED ATOMS IN A VAPOR CELL [J].
MONROE, C ;
SWANN, W ;
ROBINSON, H ;
WIEMAN, C .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1571-1574
[7]  
Tachikawa M, 2004, EXPT STUDY QUANTUM C
[8]   Self-similar magnetoresistance of a semiconductor Sinai billiard [J].
Taylor, RP ;
Newbury, R ;
Sachrajda, AS ;
Feng, Y ;
Coleridge, PT ;
Dettmann, C ;
Zhu, NJ ;
Guo, H ;
Delage, A ;
Kelly, PJ ;
Wasilewski, Z .
PHYSICAL REVIEW LETTERS, 1997, 78 (10) :1952-1955
[9]  
Taylor RP, 1997, PHYS REV B, V73