COMPLEXITY AND NILPOTENT ORBITS

被引:61
作者
PANYUSHEV, DI
机构
[1] Moscow Radioelectronics and Automation Institute, Moscow, 117454, Prosp. Vernadskogo
关键词
D O I
10.1007/BF02567611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New formulas for the complexity and the rank of an arbitrary homogeneous space of a reductive group are given. These completely reduce the problem to finding of stabilizers of general position in linear representations of reductive groups. As an application a description of spherical (i.e. of complexity zero) nilpotent orbits is obtained and it is proved that the complexity and the rank of orbits are constant along the sheets of the adjoint representation. © 1994 Springer-Verlag.
引用
收藏
页码:223 / 237
页数:15
相关论文
共 11 条
[1]   ORBITS AND THEIR DEFORMATION IN LINEAR ACTION OF REDUCTIVE GROUPS [J].
BORHO, W ;
KRAFT, H .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (01) :61-104
[2]  
BRION M, 1987, COMPOS MATH, V63, P189
[3]  
ELASVILI AG, 1975, T TBILISS MAT I RAZM, V46, P109
[4]  
Humphreys J., 1975, GRADUATE TEXTS MATH
[5]   WEYL-GROUP AND MOMENT-MAPS [J].
KNOP, F .
INVENTIONES MATHEMATICAE, 1990, 99 (01) :1-23
[6]   IMMERSION OF HOMOGENEOUS-DOMAINS [J].
LUNA, D ;
VUST, T .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :186-245
[7]  
LUSZTIG G, 1979, J LOND MATH SOC, V19, P41
[8]  
Panyushev D. I., 1992, ADV SOVIET MATH, V8, P151
[9]  
PANYUSHEV DI, 1990, GEOMETRIAE DEDICATA, V34, P249
[10]  
Springer T.A., 1970, LECT NOTES MATH, V131, P167