A VARIATIONAL METHOD FOR FINITE-ELEMENT STRESS RECOVERY AND ERROR ESTIMATION

被引:32
作者
TESSLER, A
RIGGS, HR
MACY, SC
机构
[1] UNIV HAWAII MANOA,DEPT CIVIL ENGN,HONOLULU,HI 96822
[2] LOCKHEED ENGN & SCI CO,HAMPTON,VA 23666
关键词
D O I
10.1016/0045-7825(94)90140-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variational method for obtaining smoothed stresses from a finite element derived non-smooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 24 条
[1]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[2]   A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR AND TETRAHEDRAL QUADRATIC ELEMENTS USING INTERIOR RESIDUALS [J].
BAEHMANN, PL ;
SHEPHARD, MS ;
FLAHERTY, JE .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (03) :979-996
[3]   OPTIMAL STRESS LOCATIONS IN FINITE-ELEMENT MODELS [J].
BARLOW, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (02) :243-251
[5]  
HINTON E, 1974, INT J NUMER METH ENG, V8, P461
[6]  
HINTON E, 1968, J STRAIN, V4, P24
[7]   A-POSTERIORI ERROR ANALYSIS AND ADAPTIVE PROCESSES IN THE FINITE-ELEMENT METHOD .1. ERROR ANALYSIS [J].
KELLY, DW ;
GAGO, JPDR ;
ZIENKIEWICZ, OC ;
BABUSKA, I .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (11) :1593-1619
[8]   A POSTERIORI ESTIMATES OF THE SOLUTION ERROR CAUSED BY DISCRETIZATION IN THE FINITE-ELEMENT, FINITE-DIFFERENCE AND BOUNDARY ELEMENT METHODS [J].
KELLY, DW ;
MILLS, RJ ;
REIZES, JA ;
MILLER, AD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (10) :1921-1939
[9]   ON SUPERCONVERGENCE TECHNIQUES [J].
KRIZEK, M ;
NEITTAANMAKI, P .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) :175-198
[10]   SUPERCONVERGENT DERIVATIVES - A TAYLOR-SERIES ANALYSIS [J].
MACKINNON, RJ ;
CAREY, GF .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (03) :489-509