LINEAR TIME-DEPENDENT HAMILTONIAN-SYSTEMS BEYOND THE ADIABATIC LIMIT

被引:1
作者
CASAS, F
OTEO, JA
ROS, J
机构
[1] UNIV VALENCIA,DEPT FIS TEOR,E-46100 BURJASSOT,SPAIN
[2] UNIV VALENCIA,IFIC,E-46100 BURJASSOT,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 12期
关键词
D O I
10.1088/0305-4470/27/12/035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classical version of the Magnus expansion well suited to studying adiabatic time-evolution is built up. The method improves the adiabatic approximation while being symplectic in character. It is shown that the first-order approximation is already accurate enough even far from the adiabatic limit. An analysis Of the changes suffered by the adiabatic invariant of a linear Hamiltonian system along its time-evolution illustrates part of the above results. Asymptotic formulae for such changes are also obtained with explicit computation of pre-exponential factors.
引用
收藏
页码:4325 / 4339
页数:15
相关论文
共 35 条
[31]   THE MAGNUS EXPANSION FOR CLASSICAL HAMILTONIAN-SYSTEMS [J].
OTEO, JA ;
ROS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (24) :5751-5762
[32]  
Pokrovskii V. L., 1961, ZH EKSP TEOR FIZ, V40, P1713
[33]   ADIABATIC INVARIANT OF LINEAR OR NONLINEAR OSCILLATOR [J].
SYMON, KR .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (04) :1320-&
[34]   CALCULATION OF AN ADIABATIC INVARIANT BY TURNING POINT THEORY [J].
WASOW, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (04) :673-700
[35]  
WASOW W, 1973, SIAM J MATH ANAL, V4, P78