HOMOCLINIC AND HETEROCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS

被引:49
作者
RABINOWITZ, PH
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV WISCONSIN,CTR MATH SCI,MADISON,WI 53706
关键词
Mathematics Subject Classification: 34C99; 58E99; 58F99;
D O I
10.1007/BF02163262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a rich structure of homoclinic and heteroclinic solutions is established for a family of Hamiltonian systems that serve as a simpler model for the multiple pendulum system. The proof is based on recently developed arguments from the calculus of variations that have proved useful in finding actual solutions of an equation near approximate solution.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 15 条
[1]  
Chow S-N., 1991, APPL ANAL, V42, P275
[2]   THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS [J].
CHOW, SN ;
DENG, B ;
TERMAN, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) :179-204
[3]   CHAOTIC BEHAVIOR IN SIMPLE DYNAMIC-SYSTEMS [J].
KIRCHGRABER, U ;
STOFFER, D .
SIAM REVIEW, 1990, 32 (03) :424-452
[4]  
Moser J, 1973, STABLE RANDOM MOTION
[5]   PERIODIC AND HETEROCLINIC ORBITS FOR A PERIODIC HAMILTONIAN SYSTEM [J].
RABINOWITZ, PH .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05) :331-346
[6]  
SMALE S, 1965, DIFFERENTIAL COMBINA, P63, DOI DOI 10.1515/9781400874842-006
[7]   A VARIATIONAL APPROACH TO HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
ZELATI, VC ;
EKELAND, I ;
SERE, E .
MATHEMATISCHE ANNALEN, 1990, 288 (01) :133-160
[8]  
ZELATI VC, 1991, J AM MATH SOC, V4, P693
[9]  
[No title captured]
[10]  
[No title captured]