GENERATING RSA KEYS WITHOUT THE EUCLID ALGORITHM

被引:4
作者
DEROME, MFA
机构
[1] CRL, Middlesex UB3 1HH, Dawley Road, Hayes
关键词
CRYPTOGRAPHY; NUMBER THEORY; ALGORITHMS;
D O I
10.1049/el:19930013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple formula is derived giving e-1 mod s, in terms of modular addition, multiplication, and exponentiation operations, for any positive integer s not containing the prime factor e. These modular operations would be part of the instruction set of any hardware implementation of the RSA public key algorithm, making it particularly convenient for calculating RSA key pairs where one of the pair is a prime. The formula is extended to nonprime inverses.
引用
收藏
页码:19 / 21
页数:3
相关论文
共 9 条
[1]   FAST COMPUTATION OF A-STAR-B MODULO-N [J].
BAKER, PW .
ELECTRONICS LETTERS, 1987, 23 (15) :794-795
[2]  
DENNING DER, 1983, CRYPTOGRAPHY DATA SE, P42
[3]   STRONG RSA KEYS [J].
GORDON, J .
ELECTRONICS LETTERS, 1984, 20 (12) :514-516
[4]  
KNUTH DE, 1981, ART COMPUTER PROGRAM, V2, P317
[5]   EFFICIENT METHOD FOR GENERATING STRONG PRIMES WITH CONSTRAINT OF BIT LENGTH [J].
LAIH, CS ;
YANG, WC ;
CHEN, CH .
ELECTRONICS LETTERS, 1991, 27 (20) :1807-1808
[6]   PROBABILISTIC ALGORITHM FOR TESTING PRIMALITY [J].
RABIN, MO .
JOURNAL OF NUMBER THEORY, 1980, 12 (01) :128-138
[7]  
RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI [10.1145/359340.359342, 10.1145/357980.358017]
[8]  
SLOAN KR, 1985, IEEE T COMPUT, V34, P290, DOI 10.1109/TC.1985.1676574
[9]  
SMITH J, 1983, BYTE JAN, P210