FINITE-GAP PERIODIC-SOLUTIONS OF THE KDV EQUATION ARE NONDEGENERATE

被引:10
作者
BOBENKO, AI
KUKSIN, SB
机构
[1] Max-Planck-Institut für Mathematik, W-5300 Bonn 3
关键词
D O I
10.1016/0375-9601(91)90016-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We complete the proofs of two statements concerning finite-gap solutions periodic in x of the KdV equation: (i) most of these solutions survive under Hamiltonian perturbations of the KdV equation, (ii) for most of the solutions of the perturbed equation, which were close to some finite-gap potential at t = 0, the averaging theorem of Bogolyubov-Krylov type is valid.
引用
收藏
页码:274 / 276
页数:3
相关论文
共 7 条
[1]  
Bobenko A. I., 1988, SOVIET MATH DOKL, V36, P38
[2]   QUALITATIVE-ANALYSIS AND CALCULATIONS OF FINITE-GAP SOLUTIONS OF THE KORTEWEG DE VRIES EQUATION - AUTOMORPHIC APPROACH [J].
BOBENKO, AI ;
KUBENSKII, DA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (03) :929-934
[3]  
BOBENKO AI, 1990, IN PRESS ALGEBRAIC G
[4]  
KRICHEVER IM, 1983, SOV MATH DOKL, V27, P1312
[5]  
KRICHEVER IM, 1991, SOV SCI REV MATH PHY, V9
[6]  
Kuksin S.B., 1988, MATH USSR SB, V136, P397