ON ERGODIC ONE-DIMENSIONAL CELLULAR AUTOMATA

被引:17
|
作者
SHIRVANI, M
ROGERS, TD
机构
[1] Department of Mathematics, University of Alberta, Edmonton, Alberta
关键词
D O I
10.1007/BF02099076
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that all onto cellular automata defined on the binary sequence space are invariant with respect to the Haar measure, and that an extensive class of such maps (including many nonlinear ones) are strongly mixing with respect to the Haar measure.
引用
收藏
页码:599 / 605
页数:7
相关论文
共 50 条
  • [21] THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    HILLMAN, D
    PHYSICA D, 1991, 52 (2-3): : 277 - 292
  • [22] Mixing properties of one-dimensional cellular automata
    Kleveland, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1755 - 1766
  • [23] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130
  • [24] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [25] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [26] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [27] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [28] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [29] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [30] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361