STUDY OF ODE LIMIT PROBLEMS FOR REACTION-DIFFUSION EQUATIONS

被引:9
作者
Simsen, Jacson [1 ,2 ]
Simsen, Mariza Stefanello [1 ,2 ]
Zimmermann, Aleksandra [2 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Comp, Ave BPS 1303, BR-37500903 Itajuba, MG, Brazil
[2] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
ODE limit problems; shadow systems; reaction-diffusion equations; parabolic problems; variable exponents; attractors; upper semicontinuity;
D O I
10.7494/OpMath.2018.38.1.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in L-infinity (Omega) and the diffusion coefficients go to infinity.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 28 条
  • [1] Order-preserving random dynamical systems: Equilibria, attractors, applications
    Arnold, L
    Chueshov, I
    [J]. DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03): : 265 - 280
  • [2] Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions
    Arrieta, JM
    Carvalho, AN
    Rodríguez-Bernal, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) : 33 - 59
  • [3] Asymptotic behaviour of monotone multi-valued dynamical systems
    Caraballo, T
    Langa, JA
    Valero, J
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2005, 20 (03): : 301 - 321
  • [4] LARGE DIFFUSION WITH DISPERSION
    CARVALHO, AN
    HALE, JK
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (12) : 1139 - 1151
  • [5] INFINITE-DIMENSIONAL DYNAMICS DESCRIBED BY ORDINARY DIFFERENTIAL-EQUATIONS
    CARVALHO, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) : 338 - 404
  • [6] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [7] Extremal equilibria for monotone semigroups in ordered spaces with application to evolutionary equations
    Cholewa, Jan W.
    Rodriguez-Bernal, Anibal
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) : 485 - 525
  • [8] LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS
    CONWAY, E
    HOFF, D
    SMOLLER, J
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (01) : 1 - 16
  • [9] The critical forms of the attractors for semigroups and the existence of critical attractors
    De, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1976): : 2157 - 2171
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +