APPARENT CONTOURS OF STABLE MAPS INTO THE SPHERE

被引:5
作者
Fukuda, Taishi [1 ]
Yamamoto, Takahiro [1 ]
机构
[1] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, Fukuoka, Fukuoka 8138503, Japan
来源
JOURNAL OF SINGULARITIES | 2011年 / 3卷
关键词
Stable map; cusp; node; minimal contour; genus; mapping degree;
D O I
10.5427/jsing.2011.3g
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a stable map phi: M -> S-2 of a closed and connected surface into the sphere, let c(phi) and n(phi) denote the numbers of cusps and nodes respectively. In this paper, for each integer i >= 1, in the given homotopy class with i fold curve components, we will determine the minimal number c + n.
引用
收藏
页码:113 / 125
页数:13
相关论文
共 10 条
[1]  
Demoto S., 2005, HIROSHIMA MATH J, V35, P93
[2]   The minimal number of singularities of stable maps between surfaces [J].
Kamenosono, Atsushi ;
Yamamoto, Takahiro .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (14) :2390-2405
[3]  
MILNOR J. W., 1965, TOPOLOGY DIFFERENTIA
[4]   PROJECTIONS OF SURFACES WITH A CONNECTED FOLD CURVE [J].
PIGNONI, R .
TOPOLOGY AND ITS APPLICATIONS, 1993, 49 (01) :55-74
[6]  
Thom R., 1955, ANN I FOURIER, V6, P43
[8]  
Whitney H., 1941, B AM MATH SOC, V47, P145, DOI DOI 10.1090/S0002-9904-1941-07395-7
[9]  
Yamamoto T., APPARENT CONTO UNPUB
[10]   APPARENT CONTOURS WITH MINIMAL NUMBER OF SINGULARITIES [J].
Yamamoto, Takahiro .
KYUSHU JOURNAL OF MATHEMATICS, 2010, 64 (01) :1-16