Theory of Completeness for Logical Spaces

被引:0
作者
Gomi, Kensaku [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
universal logic; abstract logic; semantics; deduction; completeness;
D O I
10.1007/s11787-009-0008-z
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
A logical space is a pair (A, B) of a non-empty set A and a subset B of PA. Since PA is identified with {0, 1} A and {0, 1} is a typical lattice, a pair (A, F) of a non-empty set A and a subset F of BA for a certain lattice B is also called a B-valued functional logical space. A deduction system on A is a pair (R, D) of a subset D of A and a relation R between A* and A. In terms of these simplest concepts, a general framework for studying the logical completeness is constructed.
引用
收藏
页码:243 / 291
页数:49
相关论文
共 13 条
  • [1] BROWN DJ, 1973, DISSERTATIONES MATH, V102, P9
  • [2] A Survey of Abstract Algebraic Logic
    J. M. Font
    R. Jansana
    D. Pigozzi
    [J]. Studia Logica, 2003, 74 (1-2) : 13 - 97
  • [3] Godel K., 1930, MONATSHEFTE MATH PHY, V37, P103, DOI DOI 10.1007/BF01696781
  • [4] Gomi K., 2008, COMPLETENESS T UNPUB
  • [5] Gomi K., LOGICAL SYSTEMS LOGI
  • [6] Gomi K., 1997, SURI SHINRIGAKU
  • [7] Henkin L., 1949, J SYMBOLIC LOGIC, V14, P159
  • [8] Jansana R, 2006, STANFORD ENCY PHILOS
  • [9] Matsuda H, 2004, THESIS
  • [10] Mizumura Y, COMPLETENESS T UNPUB