Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3-5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p=0.25) and absolute resistance decreased from 1317 to 1099 dyne. sec. cm(-5)/g (p= 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys) function in the early phase of AMI. (C) 2016 Elsevier Inc. All rights reserved.