AN INEQUALITY FOR CHROMATIC POLYNOMIALS

被引:6
作者
WOODALL, DR
机构
[1] Department of Mathematics, University of Nottingham, Nottingham
关键词
D O I
10.1016/0012-365X(92)90613-K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if P(G, t) is the chromatic polynomial of a simple graph G with n vertices, m edges, c components and b blocks, and if t less-than-or-equal-to 1, then \P(G, t)\ greater-than-or-equal-to \t(c)(t - 1)b\(1 + gamma-s + gamma-s2 + ... + gamma-s(mu-1) + s(mu), where gamma = m - n + c, mu = n - c - b and s = 1 - t. Equality holds for several classes of graphs with few circuits.
引用
收藏
页码:327 / 331
页数:5
相关论文
共 4 条
[1]   CHROMATIC POLYNOMIALS [J].
BIRKHOFF, GD ;
LEWIS, DC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 60 (NOV) :355-451
[2]  
TUTTE WT, 1974, HYP SEM, P00243
[3]   CUTPOINTS AND THE CHROMATIC POLYNOMIAL [J].
WHITEHEAD, EG ;
ZHAO, LC .
JOURNAL OF GRAPH THEORY, 1984, 8 (03) :371-377
[4]  
Woodall D. R., 1977, COMBINATORIAL SURVEY, P199