ON THE ACCELERATION OF KACZMARZ METHOD FOR INCONSISTENT LINEAR-SYSTEMS

被引:47
作者
HANKE, M
NIETHAMMER, W
机构
[1] Institut für Praktische Mathematik Universität Karlsruhe, D-7500 Karlsruhe
关键词
D O I
10.1016/0024-3795(90)90207-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the linear system Ax=b be rectangular but solvable. If A is a large sparse matrix, then one possibility to solve the system is to use the iterative method of Kaczmarz. Even in the case when the system is unsolvable, this method is applicable if the relaxation parameters are kept fixed in a certain interval. To get a meaningful result, however, one has to apply strong underrelaxation. We give an interpretation of the limit in terms of a generalized inverse of A and derive bounds with respect to the least-squares solution. Using a result of Buoni and Varga, we estimate the speed of convergence. It is further shown that the eigenvalues of the iteration matrix are nearly real numbers, and we propose to use Chebyshev acceleration. This results in a significant speedup. © 1990.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 21 条
[11]   ON THE SOLUTION OF SINGULAR LINEAR-SYSTEMS OF ALGEBRAIC EQUATIONS BY SEMIITERATIVE METHODS [J].
EIERMANN, M ;
MAREK, I ;
NIETHAMMER, W .
NUMERISCHE MATHEMATIK, 1988, 53 (03) :265-283
[12]  
ELSNER L, UNPUB NUMER MATH
[13]   ANGLES BETWEEN NULL SPACES OF X-RAYS [J].
HAMAKER, C ;
SOLMON, DC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 62 (01) :1-23
[14]  
HANKE M, IN PRESS Z ANGEW MAT, V70
[15]  
Herman G.T., 1980, IMAGE RECONSTRUCTION
[16]   COMPUTERIZED TRANSVERSE AXIAL SCANNING (TOMOGRAPHY) .1. DESCRIPTION OF SYSTEM [J].
HOUNDFIELD, GN .
BRITISH JOURNAL OF RADIOLOGY, 1973, 46 (552) :1016-1022
[17]   TCHEBYCHEV ITERATION FOR NONSYMMETRIC LINEAR-SYSTEMS [J].
MANTEUFFEL, TA .
NUMERISCHE MATHEMATIK, 1977, 28 (03) :307-327
[18]   ADAPTIVE PROCEDURE FOR ESTIMATING PARAMETERS FOR NONSYMMETRIC TCHEBYCHEV ITERATION [J].
MANTEUFFEL, TA .
NUMERISCHE MATHEMATIK, 1978, 31 (02) :183-208
[19]  
NASHED MZ, 1981, MATH ASPECTS COMPUTE, P160
[20]   GENERALIZATIONS OF THE PROJECTION METHOD WITH APPLICATIONS TO SOR THEORY FOR HERMITIAN POSITIVE SEMIDEFINITE LINEAR-SYSTEMS [J].
NELSON, S ;
NEUMANN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :123-141