Stability of steady-state visual evoked potential contrast response functions

被引:1
作者
Ash, Ryan T. [1 ]
Nix, Kerry C. [2 ]
Norcia, Anthony M. [2 ,3 ,4 ]
机构
[1] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Stanford, CA USA
[2] Univ Penn, Perelman Sch Med, Neurosci Grad Grp, Philadelphia, PA 19104 USA
[3] Stanford Univ, Dept Psychol, Stanford, CA USA
[4] Stanford Univ, Wu Tsai Neurosci Inst, Stanford, CA USA
关键词
contrast; EEG; ERPs; neuroplasticity; plasticity; ssvep;
D O I
10.1111/psyp.14412
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Repetitive sensory stimulation has been shown to induce neuroplasticity in sensory cortical circuits, at least under certain conditions. We measured the plasticity-inducing effect of repetitive contrast-reversal- sweep steady- state visual-evoked potential (ssVEP) stimuli, hoping to employ the ssVEP's high signal- to- noise electrophysiological readout in the study of human visual cortical neuroplasticity. Steady- state VEP contrast- sweep responses were measured daily for 4 days (four 20- trial blocks per day, 20 participants). No significant neuroplastic changes in response amplitude were observed either across blocks or across days. Furthermore, response amplitudes were stable within-participant, with measured across- block and across- day coefficients of variation (CV = SD/mean) of 15-20 +/- 2% and 22- 25 +/- 2%, respectively. Steady- state VEP response phase was also highly stable, suggesting that temporal processing delays in the visual system vary by at most 2- 3 ms across blocks and days. While we fail to replicate visual stimulation-dependent cortical plasticity, we show that contrast- sweep steady-state VEPs provide a stable human neurophysiological measure well suited for repeated-measures longitudinal studies.
引用
收藏
页数:10
相关论文
共 40 条
[1]   A framework to assess the impact of number of trials on the amplitude of motor evoked potentials [J].
Ammann, Claudia ;
Guida, Pasqualina ;
Caballero-Insaurriaga, Jaime ;
Pineda-Pardo, Jose A. ;
Oliviero, Antonio ;
Foffani, Guglielmo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   How reliable are the results from functional magnetic resonance imaging? [J].
Bennett, Craig M. ;
Miller, Michael B. .
YEAR IN COGNITIVE NEUROSCIENCE 2010, 2010, 1191 :133-155
[3]   CircStat: A MATLAB Toolbox for Circular Statistics [J].
Berens, Philipp .
JOURNAL OF STATISTICAL SOFTWARE, 2009, 31 (10) :1-21
[4]   A quantitative framework for motion visibility in human cortex [J].
Birman, Daniel ;
Gardner, Justin L. .
JOURNAL OF NEUROPHYSIOLOGY, 2018, 120 (04) :1824-1839
[5]   Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine [J].
Bohotin, V ;
Fumal, A ;
Vandenheede, M ;
Gérard, P ;
Bohotin, C ;
de Noordhout, AM ;
Schoenen, J .
BRAIN, 2002, 125 :912-922
[6]   Impaired Visual Cortical Plasticity in Schizophrenia [J].
Cavus, Idil ;
Reinhart, Robert M. G. ;
Roach, Brian J. ;
Gueorguieva, Ralitza ;
Teyler, Timothy J. ;
Clapp, Wesley C. ;
Ford, Judith M. ;
Krystal, John H. ;
Mathalon, Daniel H. .
BIOLOGICAL PSYCHIATRY, 2012, 71 (06) :512-520
[7]   Stimulus-Selective Response Plasticity in the Visual Cortex: An Assay for the Assessment of Pathophysiology and Treatment of Cognitive Impairment Associated with Psychiatric Disorders [J].
Cooke, Sam F. ;
Bear, Mark F. .
BIOLOGICAL PSYCHIATRY, 2012, 71 (06) :487-495
[8]   Visual Experience Induces Long-Term Potentiation in the Primary Visual Cortex [J].
Cooke, Sam F. ;
Bear, Mark F. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (48) :16304-16313
[9]   Non-invasive transcranial ultrasound stimulation for neuromodulation [J].
Darmani, G. ;
Bergmann, T. O. ;
Pauly, K. Butts ;
Caskey, C. F. ;
de Lecea, L. ;
Fomenko, A. ;
Fouragnan, E. ;
Legon, W. ;
Murphy, K. R. ;
Nandi, T. ;
Phipps, M. A. ;
Pinton, G. ;
Ramezanpour, H. ;
Sallet, J. ;
Yaakub, S. N. ;
Yoo, S. S. ;
Chen, R. .
CLINICAL NEUROPHYSIOLOGY, 2022, 135 :51-73
[10]  
Dias J. W., 2022, BIORXIV