INTEGRAL-EQUATION METHOD FOR EFFECTING KINNERSLEY-CHITRE TRANSFORMATIONS .2.

被引:74
作者
HAUSER, I
ERNST, FJ
机构
[1] Department of Physics, Illinois Institute of Technology, Chicago
来源
PHYSICAL REVIEW D | 1979年 / 20卷 / 08期
关键词
D O I
10.1103/PhysRevD.20.1783
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Our previously presented integral equation formulation of the Kinnersley-Chitre transformation theory is generalized to the case of electrovac-to-electrovac transformations. The solution of the integral equation for a case in which the kernel has a finite number of simple poles is obtained. In particular, we show that when the transformation corresponding to one simple pole is applied to Minkowski space, one obtains the Ehlers transform of the extreme charged Kerr-NUT (Newman-Unti-Tambourino) space. We also find the general solution corresponding to a confluence of two simple poles. © 1979 The American Physical Society.
引用
收藏
页码:1783 / 1790
页数:8
相关论文
共 9 条
[1]   GENERATION OF NEW SOLUTIONS OF EINSTEIN-MAXWELL FIELD EQUATIONS FROM ELECTROVAC SPACETIMES WITH ISOMETRIES [J].
HAUSER, I ;
ERNST, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) :1316-1323
[2]   INTEGRAL-EQUATION METHOD FOR EFFECTING KINNERSLEY-CHITRE TRANSFORMATIONS [J].
HAUSER, I ;
ERNST, FJ .
PHYSICAL REVIEW D, 1979, 20 (02) :362-369
[3]   GENERATION OF ASYMPTOTICALLY FLAT, STATIONARY SPACE-TIMES WITH ANY NUMBER OF PARAMETERS [J].
HOENSELAERS, C ;
KINNERSLEY, W ;
XANTHOPOULOS, BC .
PHYSICAL REVIEW LETTERS, 1979, 42 (08) :481-482
[4]  
HOENSELAERS C, UNPUBLISHED
[5]  
JONES TA, UNPUBLISHED
[6]   SYMMETRIES OF STATIONARY EINSTEIN-MAXWELL EQUATIONS .4. TRANSFORMATIONS WHICH PRESERVE ASYMPTOTIC FLATNESS [J].
KINNERSLEY, W ;
CHITRE, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2037-2042
[7]   SYMMETRIES OF STATIONARY EINSTEIN-MAXWELL FIELD EQUATIONS .2. [J].
KINNERSLEY, W ;
CHITRE, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (08) :1538-1542
[8]   SYMMETRIES OF STATIONARY EINSTEIN-MAXWELL FIELD EQUATIONS .3. [J].
KINNERSLEY, W ;
CHITRE, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (09) :1926-1931
[9]  
MUSKHELISHVILI NL, 1953, SINGULAR INTEGERAL E, pCH18