PARTICLES FOR FLUIDS: SPH VERSUS VORTEX METHODS

被引:18
作者
Colagrossi, Andrea [1 ]
Graziani, Giorgio [2 ]
Pulvirenti, Mario [3 ]
机构
[1] INSEAN, CNR, Via Vallerano 139, I-00128 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerospaziale, I-00184 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
particle methods; smoothed-particle hydrodynamics; vortex method; convergence; viscous flows;
D O I
10.2140/memocs.2014.2.45
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We review the basic ideas underlying two popular particle methods for fluids: smoothed-particle hydrodynamics and the vortex method. We discuss convergence problems, numerical schemes, and examples of practical simulations.
引用
收藏
页码:45 / 70
页数:26
相关论文
共 48 条
[1]  
[Anonymous], 2001, APPL MATH SCI
[2]  
Antonuccio-Delogu V., 1996, Applied Parallel Computing. Computation in Physics, Chemistry and Engineering Science. Second International Workshop, PARA '95. Proceedings, P24
[3]   Free-surface flows solved by means of SPH schemes with numerical diffusive terms [J].
Antuono, M. ;
Colagrossi, A. ;
Marrone, S. ;
Molteni, D. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :532-549
[4]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[5]   Convergence of SPH method for scalar nonlinear conservation laws [J].
Ben Moussa, B ;
Vila, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :863-887
[6]  
Ben Moussa B, 2006, METHODS APPL ANAL, V13, P29
[7]   GENERATION OF VORTICITY NEAR THE BOUNDARY IN PLANAR NAVIER-STOKES FLOWS [J].
BENFATTO, G ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :59-95
[8]   CONVERGENCE OF CHORIN-MARSDEN PRODUCT FORMULA IN THE HALF-PLANE [J].
BENFATTO, G ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (03) :427-458
[9]   A VISCOUS SPLITTING ALGORITHM APPLIED TO LOW REYNOLDS-NUMBER FLOWS ROUND A CIRCULAR-CYLINDER [J].
BENSON, MG ;
BELLAMYKNIGHTS, PG ;
GERRARD, JH ;
GLADWELL, I .
JOURNAL OF FLUIDS AND STRUCTURES, 1989, 3 (05) :439-479
[10]   Navier-Stokes equations on a flat cylinder with vorticity production on the boundary [J].
Boldrighini, Carlo ;
Butta, Paolo .
NONLINEARITY, 2011, 24 (09) :2639-2662